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ABSTRACT

Many real world graphs have small world characteristics, that is,
they have a small diameter compared to the number of nodes and
exhibit a local cluster structure. Examples are social networks, soft-
ware structures, bibliographic references and biological neural nets.
Their high connectivity makes both finding a pleasing layout and
a suitable clustering hard. In this paper we present a method to
create scalable, interactive visualizations of small world graphs, al-
lowing the user to inspect local clusters while maintaining a global
overview of the entire structure. The visualization method uses a
combination of both semantical and geometrical distortions, while
the layout is generated by a spring embedder algorithm using a re-
cently developed force model. We use a cross referenced database
of 500 artists as a running example.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Graphical User Interfaces; H.2.8 [Database
Management]: Database Applications—Data Mining I.5.5 [Pattern
Recognition]: Clustering—Algorithms

Keywords: Graph Visualization, Graph Drawing, Clustering,
Small World Graphs

1 INTRODUCTION

Networks, or graphs as they are known in mathematics, form a large
part of modern day information structures. From gene maps and
circuit design to large cross-referenced document collections, net-
works play an important role in modeling relations between discrete
items. Apart from local properties such as explicit relationships
between two items, users dealing with these networks are often
also interested in the global properties of the network: Are there
any distinct groups of items that are strongly interconnected (i.e.
graph clusters)? How do these split into separate clusters and how
do these clusters relate? One way to answer these questions is to
provide a picture of the network in which these global properties
emerge visually.

In this paper we will focus on small world graphs. First iden-
tified by [20] in social networks, small world graphs are graphs
which have a small average path length (average shortest path be-
tween nodes) compared to their number of nodes, but have a high
degree of clustering compared to a random graph of the same size.
The degree of clustering can be expressed by the clustering index
[35, 2]. The small world property has been identified in many real
world graphs such as social networks, neural networks, software
systems, power grids, cross referenced knowledge bases and the in-
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Figure 1: Force directed rendering of a 500 node graph, rendered
with GEM

ternet. Effective visualization of these graphs can provide valuable
insight in their structure.

As a running example throughout this paper we use a graph of
500 cross-referenced painters and sculptors, taken from The Art
Book [25]. References between artists were made based on time
periods and artistic movements, but also on the style and feeling of
their work. The resulting connected graph consists of 500 nodes
and 2486 edges. The graph has an average path length of 4 and
a clustering index of 0.18. A random graph of similar size has a
clustering index of 0.0093. We therefore consider it to have small
world characteristics. The only class of layout algorithms that are
general enough to deal with small world graphs are force directed
algorithms, which model a graph as a system of repelling particles
and springs. The situation in which the energy in such a system is
minimal constitutes an optimal drawing. Force directed algorithms
can provide satisfactory results for many types of graphs.

However, they often produce disappointing results when it comes to
dense, highly connected graphs in general and small world graphs
in particular. Figure 1 shows a layout for out artists graph, gener-
ated with GEM [10], a typical example of a force directed graph
drawing package. Based on the semantics of the input data and the
relatively high clustering index, we would like the visualization to
clearly display any strongly connected subgraphs that might cor-
respond to artistic movements. Yet we observe that the nodes are
distributed rather uniformly over the image, and that the large num-
ber of overlapping edges makes it hard to draw conclusions on the
global structure.

In this paper we present a new method to visualize small world
graphs, such that insight in the structure can be obtained more eas-
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Figure 2: Layouts with random initialization: (a) LinLog force model (P = −381705,M = 1500) and (b) Our force model (P = −544602,M =
1500, t0 = 0.5, t1 = 0.6,rstart = 2). Nodes are colored based on artistic movement.

ily. Section 2 discusses related work. In section 3 we describe
how the layout can be improved by employing a force model based
on recent work by Noack [24]. In section 4 we show how we can
reduce the number of screen items and still provide a detailed im-
pression of the area we are interested in. Finally, in section 5 we
draw conclusions and discuss future work.

2 RELATED WORK

One way to show the structure in graphs is to determine graph clus-
ters (loosely defined as highly connected subgraphs) a priori and
present these to the user. Graph partitioning has attracted much in-
terest, from diverse areas such as data mining, VLSI design and
finite element simulations. Prior literature is substantial and is
spread out over many different application areas [1, 27, 7, 17, 32].
However, a hard problem with the use of any automatic clustering
method is the fuzzyness of the problem itself. Although the con-
cept of a graph cluster is easy to understand intuitively, there is no
full-proof formal definition of the concept of a natural graph cluster
for every task the user wants to perform. Also, graph partitioning
methods generally try to optimally divide the graph into a prede-
fined number of partitions, but in the context of information visu-
alization it is generally not desirable (or even possible) to specify
this number in advance. Other methods, most notably those based
on [22] avoid this pitfall but suffer from O(N3) complexity.

A second problem is that having a decent clustering does not
absolve us from constructing a consistent visualization of this clus-
tered graph afterwards. We therefore take an alternate approach
by first constructing a layout that reflects the cluster structure and
basing the clustering on this layout.

The visual presentation of graphs has been studied intensively
in the Graph Drawing [4] and Information Visualization [16] com-
munities. In both fields, a popular method to lay out graphs is the
force directed algorithm (FDA), introduced by Eades [8]. FDAs are
widely used because they are simple to understand and implement,
yet they can provide a pleasing layout for sparse graphs, showing
global graph structure and graph automorphisms. A disadvantage
of the basic algorithm is its computational complexity. Because in

each iteration repulsive forces have to be calculated between every
node pair and the total number of iterations is typically in the order
of the number of nodes N, the total complexity is O(N3). Most of
the research in this area focuses on improving this [15, 26, 34, 13].
Other research on FDA’s tries to create layouts that are more aes-
thetically pleasing by introducing different force models. A recent
promising direction is the introduction of a force model that maps
the connectivity between two sets of nodes to geometric distance
between those sets [24]. This results in highly connected groups of
nodes being displayed as areas with a higher node density.

Recently, [2] tried to visualize small world graphs by computing
an edge strength metric for each edge in the graph. The graph is
then partitioned into subgraphs by removing all edges that have an
edge strength below a given threshold. Although initial results are
promising, this method was not very effective on our sample graph.
We believe this is due to the rather small clustering index of our
graph (0.18), whereas [2] used graphs with very high clustering
indices (mostly over 0.90).

Other methods to obtain insight into large cluttered structures
are Information Galaxies, Information Landscapes [36] and the re-
lated Graph Splatting method [33]. Galaxies and Information Land-
scapes are mostly used to visualize large document collections.
Documents are represented as multidimensional points, clustered
and subsequently projected onto a two dimensional display by mul-
tidimensional scaling. Galaxies plot this two dimensional space as a
series of points, but tend to suffer from information overload. Infor-
mation Landscapes improve on this by constructing a smooth three
dimensional height surface, where the height indicates the relative
concentration of themes in an area. Graph Splatting is a related
technique that creates a height field by convolving node positions
obtained from a force directed layout with Gaussian splats. These
methods however, offer a continuous representation of something
that is inherently discrete, and although nodes can be plotted on
the resulting height field, the relationships between nodes are often
lost.
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Figure 3: Using spheres to emphasize clusters. The node screen size is kept constant when zooming in such that clusters fall apart in closeups.

3 FORCE MODEL

Assume an undirected graph G = (V,E) where V is the collection of
nodes and E a collection of edges. We indicate an edge connecting
node i and node j by ei j , having weight w(ei j) = 1. Force directed
algorithms model this graph as a physical system and then try to
find positions pi for all nodes i such that the total energy in the
system is minimal. The force on a vertex depends on the attractive
force exerted by its incident edges and the repulsive force exerted by
other nodes in the graph. Both forces are functions of the distance
between nodes. We can write the total force exerted on a vertex i as

Fi = ∑
ei j∈E

f (pi j)p̄i j −∑
i�= j

g(pi j)p̄i j

with pi j = |pi−p j| and p̄i j = (pi−p j)/pi j . The functions f (x) and
g(x), which determine the attractive and repulsive forces respec-
tively, typically follow physical analogies. For f (x) this is usually
Hooke’s spring law:

f (x) = A · (x− x0)

where x0 signifies the zero energy length of the spring. The re-
pulsive forces generally follow an inverse square law inspired by
electrostatic fields:

g(x) =
B
x2

Here, A and B are constants representing the strength of the attrac-
tion and repulsion respectively. The total potential energy of the
system can then be expressed as

P =
A
2 ∑

ei j∈E
(pi j − x0)2 −B ·∑

i�= j

1
pi j

In the optimal node configuration the potential energy of the sys-
tem is minimal. Finding this global minimum directly is often not
feasible, due to the high dimensionality of the problem, hence an
iterative approach has to be used. A commonly used method is op-
timizing by steepest descent. Starting from a random configuration,
the nodes are moved in the direction of the forces exerted on them,
such that in the end the total force on each node is zero, or, in other
words, a minimum energy state is reached. Often this will be only
a local minimum, but usually the result is visually pleasant enough.

Conventional force models minimize the total variance in edge
lengths, attempting to keep all edge lengths close to p0. For dense
graphs with a small diameter (such as small world graphs) this re-
sults in a uniform node distribution, because all nodes are kept close
to their neighbors. Instead, force models that position tightly cou-
pled groups of nodes closely together and loosely coupled groups

of nodes far apart may provide much better results. Noack derives a
class of force models for which this property holds, the so-called r-
PolyLog energy models. In these models the total potential energy
is defined as

P = ∑
ei j∈E

(pi j − x0)r −∑
i�= j

ln(pi j)

Note that 3-PolyLog has an energy function that is equal to the one
used by [11]. The most interesting in this respect however is the
1-PolyLog model, that has associated force functions

f (x) = 1

and
g(x) =

1
x

Noack proves that by using the 1-PolyLog (which he dubs LinLog)
model we obtain an embedding in which the distance between two
clusters of nodes is inversely proportional to their coupling. The
coupling between two clusters C1 and C2 is a measure of their con-
nectivity and is defined as E(C1,C2)/|C1||C2|, where E(C1,C2) in-
dicates the total number of edges connecting nodes in C1 and C2.
Using a constant force attraction might seem strange at first, but it
allows intra-cluster edges to grow while inter-cluster edges shrink.
In [24] some results on artificially generated graphs with high clus-
tering indices are provided.

Experimental results on real world graphs using the LinLog en-
ergy model show that it is more susceptible to getting stuck in a lo-
cal minimum than conventional methods when started from a ran-
dom initial node configuration. Although this is hard to prove in
general, we can reason that the force exerted on a node connected
by a single long edge to the rest of the graph is much less in the
LinLog model than in the 2-PolyLog model. This makes it eas-
ier for the combined repulsive forces from other nodes to prevent
this node from reaching its optimal location. A better solution is
not to use a random layout as a starting point but first create an
acceptable layout with another force model. Generalizing this we
used a r-PolyLog force model at step m out of a total of M steps
(0 ≤ m < M−1) of the optimization process, where

r = rstart if 0 ≤ m < t1M
r = αm rstart +(1−αm) ·1 if t1M ≤ m < t2M
r = 1 if t2 ≤ m < M

with 0 ≤ t1 < t2 < 1, rstart ≥ 2 and αm = t2M−m
t2M−t1M .
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Figure 4: Using explicit clustering to abstract the graph: (a) Straight cut, (b) Semantic Fisheye using a cubic DOA function and (c) Semantic
Fisheye with a linear DOA function integrated with a geometrical fisheye

This resulted in layouts with a substantial smaller energy than
the ones we obtained starting from a random initial positioning
in the same number of iterations, as is shown in figure 2. To test
whether the visual clusters generated by the layout algorithm, ac-
tually correspond to semantical clusters in the dataset, we added
expert data on a painters artistic movement (unfortunately we were
unable to retrieve this information for all painters) and used it to
color the nodes (Figure 2b). For all modern movements (right half)
the image shows a clear coherence between the movement and the
clustering in the layout. For most classical painters (left half) this
coherence is much less clear however. Although we are able to find
some small structural clusters based on movement, we suspect that
most pre-17th century artists are likely clustered based on another
(unknown) property, such as geographical location.

4 VISUALIZATION

Given a layout LG of a graph G, we can state that highly connected
subgraphs are now visible as areas with a higher node density. How-
ever, the image shown in figure 2(b) is still noisy and hard to read.
Apart from that, displaying all nodes and edges at one single time is
simply not an option if when dealing with larger graphs. We have
to provide a way to reduce the number of visible elements, while
maintaining the global structure of the graph. In other words, we
have to provide a visual abstraction of LG. At the same time the
user will also be interested in details, so we have to find an accept-
able way to integrate detail with context. The visualization of edges
also remains a problem, since the large number of long edges in the
picture make it hard to trace individual connections. We discuss
each of the problems mentioned above in the next sections

4.1 Visual Abstraction

A simple but effective way to provide visual abstraction without
losing a sense of the global structure is to render the nodes as over-
lapping spheres with constant size in screen space. The result-
ing configuration of partly overlapping spheres visually abstracts
a cluster of nodes, showing it as a blob like structure. At the same
time, the internal structure of a cluster is still visible as a shaded
Voronoi diagram, giving an impression on how the cluster falls
apart when we zoom in. By keeping the screen size of nodes con-
stant while zooming in on the structure, we obtain progressively
more details. In fact, this method can be seen as a fast alternative to

[30], with the added ability to continuously display the graph at any
level of abstraction by zooming in or out. Figure 3 shows our sam-
ple graph at three zoom levels, nodes are colored based on birthdate.
For example, 16th century painter Guiseppe Arcimboldo is classi-
fied as (a very early) surrealist, which is not so strange considering
his paintings.

Another often used way to provide abstraction is to compute a
clustering on LG. In the layout the distance between clusters is in-
versely proportional to their coupling. This means that we can use
the geometric distances between nodes as a useful clustering met-
ric, since the most tightly coupled clusters are geometrically clos-
est. We perform a bottom up agglomerative clustering on G using
any distance measure d(i, j) between two clusters i and j. Define a
cluster k as a tuple (ck,rk,dk, fk), where ck represents the cluster’s
center, rk its radius, dk the distance between its two subclusters
and fk its parent cluster. Initially we assign all nodes i to separate
clusters (pi,rbase,0,nil). Next, we iteratively merge clusters by se-
lecting the two clusters i and j with minimal d(i, j) and merging
them in a new cluster k. For all edges e(i j)x incident to i or j we
create a new edge ekx. If an edge ekx already exists we increase its
weight by w(e(i j)x).

The new cluster has to provide some visual feedback on the
amount of leaf nodes it contains and their approximate positions.
Let LN(k) be the set of leaf nodes in cluster k. A straightforward
choice for ck is the average position of all leaf nodes l ∈ LN(k). We
let the radius rk depend on |LN(k)|. Linear (radius is proportional
to size), a square root (area is proportional to size) or a cube root
(area is proportional to volume) function are all candidates. We
found that the square root function provides better results in gen-
eral, since a linear function sometimes leads to excessively large
clusters, while a cube root function makes it too hard to discern
size differences.

This leaves us with choosing a suitable distance function d(i, j)
to determine the distance between two clusters. Widely used met-
rics in clustering literature define the inter cluster distance as a func-
tion of the distances between their (leaf)members [14].

Well known variants are minimum link, maximum link and av-
erage link distance. Minimum link defines the distance d(i, j) be-
tween clusters i and j as the distance between the two closest mem-
bers of both clusters, maximum link uses the distance between the
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two furthest members, while average link uses the average distance
between all members.

Clustering using the minimum link measure has the tendency
to form long chains, while maximum link clustering is very sensi-
tive to outliers. Average link clustering generally provides a good
optimum between both and is our metric of choice here. For the
distances between cluster members (i.e. the leaf nodes) we can
choose either the geometric distance or the edge length, with the
edge length between unconnected nodes set to infinity. The latter
method does not allow clusters that are not interconnected but po-
sitioned geometrically close by a suboptimal layout to be merged.
Although aesthetically less pleasing, we use the edge lengths for
clustering because it creates better clusters.
Applying the cluster algorithm outlined above results in a binary
hierarchy or dendrogram, where the level in the hierarchy for a
cluster k is equal to the distance dk between its child clusters. A
simple way to create abstractions for a clustered graph is to define
a global degree of abstraction DOA ∈ [0,1] and display only those
clusters k for which dk ≤ droot ·DOA < d fk (Figure 4.1). To create
a continuous transition when DOA is changed we can interpolate
between the size and position of cluster k and the size and position
of its parent cluster using a local parameter λk where

λk = ((DOA ·droot)−dk)/(d fk −dk)

λk is a parameter that indicates the amount of interpolation be-
tween the position and size of a cluster k and the position and
size of its parent fk based on the degree of abstraction at that
point. We can state that 0 ≤ λk ≤ 1 for all visible clusters, because
dk ≤ droot ·DOA < d fk .
Based on user preference we can either use linear, exponential or
slow-in slow-out interpolation (Fig 5). We found a combination of
a linear interpolation for the positions and an exponential interpola-
tion for the cluster size to give the best results. Interpolating cluster
sizes exponentially prevents small isolated clusters from growing
to their parents size too quickly. Using λ we can compute sizes
and positions for all clusters visible in the current ’slice’ of the hi-
erarchy and we can show the graph at an arbitrary level of detail
by varying the DOA. Note that a similar idea was coined by [26],
but their ’horizons’ are defined on a hierarchy with discrete levels
and the hierarchy is generated based on a simple recursive space
subdivision technique that does not always generate very accurate
clusters. The procedure outlined above is in effect a continuous
version of this idea. Figure 4a shows our artists graph at a higher
level of abstraction, representing a reduction of 97% in the number
of visible nodes.

Figure 5: Interpolation of sizes and positions based on current DOA.
Linear interpolation on the left, exponential interpolation on the right

Figure 6: Top down view of visualization area indicating the three
different methods of visual abstraction: area A uses a fisheye lens to
distort node positions, area B incrementally abstracts nodes and area
C displays nodes with a constant DOA to avoid unnecessary motion
in the periphery

Figure 7: Schematic cross section, showing the cluster dendrogram
with constant and variable DOA functions

4.2 Detail and Context

Providing both detailed information as well as a global context in
one image is one of the fundamental problems in Information Vi-
sualization. Although we are able to provide views of a graph at
different levels of abstraction, the user will probably be more in-
terested in obtaining detail information for some specific section of
the graph. One solution is to embed this detail in the global graph
structure in a useful way, allowing the user to maintain both a con-
text for the local area he is interested in, as well as a consistent
global mental map of the entire structure.

One often used way of embedding local detail in global context
is the Fisheye View. Generalized Fisheye views [12] define a De-
gree of Interest for an information element based on its a priori
importance and its distance to a focal point. Most applications of
the fisheye technique fall into one of two categories. One are the
distortion oriented techniques, which distort the sizes and positions
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Figure 8: Series of frames showing the effect of a changing focus on the layout. Surrealist artists are indicated in red, artists belonging to the
Pop-Art movement in green.

of nodes based on their geometric distance to the focus. This can be
either done in the layout stage by employing a hyperbolic distance
measure [18, 21] or as a successive projection step on an existing
layout [28, 19, 6, 31]. The other are data suppression techniques
that hide or abstract nodes based on the distance to a focus, creating
an abstracted layout. Although conceptually closer to Furnas’ orig-
inal idea, relatively few researchers have pursued this path. Most
notable are [9, 26], while others, such as [29] also use abstraction
coupled with a distortion function but require the user to manually
expand and collapse clusters of interest.

Distortion oriented techniques provide a local geometric zoom
that is easily understandable, but still require all nodes to be drawn.
Data suppression techniques avoid this and only display a fraction
of the nodes, but they require extra attention to keep the relation-
ship between nodes and their abstractions understandable. Often
used ways to do this are by visual containment (i.e. always dis-
playing a node visually contained in its abstraction) or animation
(by animating from an abstracted layout to a detailed layout). Since
both techniques have their individual merits, we propose to inte-
grate them in a single scheme (fig 4c).

That is, we use a geometric fisheye by varying the local zoom
factor with the distance from a focus and a semantic fisheye by
varying the DOA with the distance from the focus. We therefore
divide the visualization area into three concentric sections, based
on the distance s of a point p to a focal point f (Figure 6) : A focal
area A where s ≤ R f , an area B with R f < s ≤ RDOA in which we
increasingly abstract nodes and an area C in which we keep the
degree of abstraction constant.

For points within the focal area A we use a variable geometric
zoom. We prefer a function Z that magnifies sections close to f but
does not distort when s ≥ R f . A suitable function is the Fisheye
Distortion function from [28], i.e.,

Z(s) = (z+1) s
z s/Rf +1 if s < R f

Z(s) = s if s ≥ R f

In this case z is a factor that determines the amount of zoom
near the focus. Instead of also scaling the node sizes, like a com-
mon fisheye lens does, we keep the size of nodes in screen space
constant, analogous to the abstraction method mentioned at the be-
ginning of the previous paragraph. This gives the visual effect that
a tightly packed cluster of nodes gets ‘pulled apart’ near the center
of the fisheye lens.

For points outside the focal area we use a semantic fisheye, that
is, points p for which R f < s ≤ RDOA are increasingly abstracted
with increasing distance from the focus (area B). In other words, in-
stead of a single global abstraction level DOA, we define a function

DOA(s) ∈ [0,1] that specifies a degree of abstraction as a function
of the distance s of a point p to f.

We then render the graph by only rendering the highest clusters
in the hierarchy k for which

dk ≤ droot ·DOA(|ck − f|) ∧ droot ·DOA(|c fk − f|) < d fk

We can find these clusters quickly by inspecting the hierarchy in a
top-down fashion. We use a DOA function that does not abstract
nodes in area A, is increasing in area B and has a constant value in
area C:

DOA(s) = 0 if s < R f
DOA(s) = a(s) if R f < s ≤ RDOA
DOA(s) = a(RDOA) if RDOA < s

The choice of an increasing function a is arbitrary, but linear and
cubic functions are straightforward choices here. Figure 4 shows
samples of both. By using a constant DOA for nodes in area C, we
avoid changing the interpolated sizes and positions for these nodes
when the focus changes. Since movement is such a strong visual
cue, viewer attention might get distracted from the focal area to
the context, which is undesirable. Figure 7 shows these concepts
schematically.

Summarizing the above, a node i at distance s = |pi − f| from the
focus point is displayed by:

1. abstracting the node based on a function DOA(s).

2. projecting the abstracted node at position f+Z(s) · pi−f
s .

By visually indicating the edge of the fisheye distortion, we make
these two different zooming actions (one geometric and the other
semantic) more understandable for the user (Fig 4c). The overall
effect obtained when moving the focus bears a lot of resemblance to
the Magic Lens [5]. Fig 8 shows a number of intermediate frames
when moving the focus. The fact that only O(Log(N)) nodes are
visible on average (depending on the choice of the DOA function)
allows us to maintain interactive performance. We also provide a
consistent, albeit abstracted, picture of the context. In full geo-
metric distortion techniques the positions of items in the context
depends on the current position of the focus. This prevents the cre-
ation of a consistent mental map.

We have also applied our method to various other graphs. As an
example, figure 9 shows the largest connected part of the data set
used in [33]. The nodes represent 824 papers in the proceedings of
the IEEE Visualization conferences from 1990 to 2002, with edges
denoting citations. We could identify several main research areas
by looking at the conference session the papers appeared in.
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4.3 Edges

So far we have only considered the visualization of nodes, this sec-
tion discusses the visualization of edges. Traditionally, edges are
visualized in node link diagrams as straight lines with a fixed width.
As figure 2b shows, many long intersecting edges lead to a noisy
image. We make the following observations:

• Line crossings can only be resolved by using the Gestalt prin-
ciple of visual continuity, i.e., we assume that the direction of
the lines after a crossing is the same;

• The use of screen space of edges is proportional to their
length;

• The longer edges account for only a small part of the total
number of edges.

Based on the first observation, we can improve visual continuity
by displaying edges as shaded tubes. The shading augments the
visual continuity, and also depicts edges and nodes similarly. We
plot short edges closer to the viewer than long edges, resolving most
intersections and de-emphasizing longer edges. As a consequence
of the second observation, long edges use up a large part of the
available pixels, although they are no more important than short
edges. To resolve this imbalance we aim to keep the amount of
space for each edge constant. However, simply keeping the product
of width and length of edges constant leads to edges that are too
thin, and also, we are using 3D tubes here. Therefore, we keep the
volume of an edge constant.

Based on the third observation, we can state that a small portion
of the edges takes up a large portion of the display space. In our
case, we found that the 5% longest edges account for 29% of the
total edge-length and hence use up almost one third of all pixels
allocated to edges. We can decrease the total number of pixels used
for the display of edges in the graph substantially by leaving out
only a few percent of the longest edges. Since simply eliding these
edges would cause a loss of information, we instead choose to draw
a small fraction (say, 5%) of the longest edges transparently.

5 CONCLUSIONS AND FURTHER WORK

We have presented a new method that enables us to get insight in the
structure of small world graphs. Small world graphs are notoriously
hard to visualize because of their highly connected nature. Our
method contributes:

• A modifications to a force model from [24] in order to obtain
layouts that better reflect the natural cluster structure of the
graph.

• A method for continuous visual abstraction that combines
both explicit clustering and visual clustering. Both clustering
methods provide smooth interpolation between various levels
of detail.

• The combined use of the previous techniques in an interactive
generalized fisheye scheme, using both semantic and geomet-
ric distortions.

The resulting visualization shows an abstracted view of the entire
graph, in which a close up view is integrated. Because on average
only O(Log(N)) clusters are visible, the system is fast enough to
perform at interactive speeds.

Figure 9: Citations between papers published in 12 years of IEEE
Visualization conference proceedings, focus is centered on volume
visualization (blue). Other significant clusters are flow visualization
(red), terrain visualization/surface simplification (green) and infor-
mation visualization (yellow)

An obvious addition to the visualization is the use of multiple
foci. Although not implemented yet, we can simply change the
current function d(p, f) to a function dM(p,F) that returns the dis-
tance of p to the nearest focus in the collection of foci F . Another
possible improvement concerns the amount of uncertainty in the vi-
sualization. The further away from the focus a cluster is, the more
inaccurate its representation. The current node representation (i.e.
a sphere) gives the impression of a data item with a clearly defined
position and size. An alternative might be to use splats for node rep-
resentation and vary the shape of the splat with increasing distance
to f. That is, we use a sphere for nodes close to f and a gaussian
splat for nodes in the periphery. Also, automatic labelling of clus-
ters is an important issue. Currently semantics for clusters can only
be given by inspecting leafnodes inside that cluster manually. The
usefulness of these visualizations would certainly be increased if
we could characterize each cluster automatically.

In the future we will focus on larger graphs, consisting of tens of
thousands of nodes and more. The current layout method inherits
the O(N3) complexity of the standard force directed algorithm, but
recent efficiency improvements for this, such as Barnes-Hut opti-
mization [3, 26] can be used, such that a O(N2 logN) complexity
is achieved. Note that multigrid/multiscale methods such as [15],
perform poorly on dense graphs with small diameters (as their au-
thors also note). The clustering step currently has an O(N2Log(N))
complexity and may also benefit from this space subdivision tech-
nique. Recent research by [23] suggests a promising O(N2) algo-
rithm to explicitly compute a dendrogram of clusters based on the
graph structure. We intend to use this method to evaluate the qual-
ity of our layout further. Both steps (layout and clustering) however
are preprocessing steps and are not critical to the interactivity, and
it will be interesting to see how our method performs on larger real-
world graphs.
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