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ABSTRACT 
High-throughput experiments such as gene expression micro-
arrays in the life sciences result in large datasets. In response, a 
wide variety of visualization tools have been created to facilitate 
data analysis.  Biologists often face a dilemma in choosing the 
best tool for their situation. The tool that works best for one 
biologist may not work well for another due to differences in the 
type of insight they seek from their data. A primary purpose of a 
visualization tool is to provide domain-relevant insight into the 
data. Ideally, any user wants maximum information in the least 
possible time. In this paper we identify several distinct 
characteristics of insight that enable us to recognize and quantify 
it.  Based on this, we empirically evaluate five popular microarray 
visualization tools.  Our conclusions can guide biologists in 
selecting the best tool for their data, and computer scientists in 
developing and evaluating visualizations. 
 
CR Categories: H.5.2 [Information Interfaces and Presentation]: 
User Interfaces – Evaluation/Methodology, I.6.9 [Visualization] – 
Information Visualization, Visualization Systems and software, 
Visualization techniques and Methodologies 
 
Keywords: Data visualization, empirical evaluation, insight, high 
throughput experiments, microarray data, bioinformatics  
 
1 INTRODUCTION 
Biologists use high-throughput experiments to answer complex 
biological research questions. Experiments, such as gene-
expression microarrays [8], result in datasets that are very large. 
Due to its magnitude, microarray data is prohibitively difficult to 
analyze without the help of computational methods.  

The advent of high-throughput experiments is causing a shift in 
the way biologists do research, a shift away from simple 
reductionist testing on a few variables towards systems-level 
exploratory analysis of 1000s of variables simultaneously.  Hence, 
they use various data visualizations to derive biological 
inferences. The main purpose in using these visualizations is to 
gain insight into the extremely complex and dynamic functioning 
of living cells. In response to these needs, a large number of 
visualization tools targeted at this domain have been developed 
[2], [19] and [26].  

However, in collaborations with biologists, we received mixed 
feedback and reviews about these tools.  First, with so many tools 
to choose from, there is significant confusion among the 
biologists about which tool to use.  Second, because of the open-
ended and exploratory nature of the tasks, it is unclear how and if 
these tools are meeting their needs in providing insight. 

The main goal of the research reported in this paper is to 
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evaluate some of the most popular visualization tools for 
microarray data analysis, such as Spotfire® [30]. The key 
research questions are:  How successful are these tools in assisting 
the biologists in arriving at domain-relevant insights?  How do the 
various visualization techniques affect users’ perception of data?  
How does the user’s background affect the tool usage?    

Typically, visualization evaluations have focused on controlled 
measurements of user performance and accuracy on 
predetermined tasks. However, to answer these research questions 
requires an evaluation method that more closely matches the 
exploratory nature of the biologists’ goals.  We devise and deploy 
an insight-based approach to visualization evaluation that we 
believe can be generally applied in other data domains. 
 
2 RELATED WORK 
A large number of studies have been conducted to measure 
effectiveness of visualizations using different evaluation methods.  

Controlled experiments: Many studies have evaluated 
visualizations through rigorous controlled experiments [4], [5]. In 
these studies, typical independent variables control aspects of the 
tools, tasks, data, and participant classes. Dependent variables 
include accuracy and efficiency measures. Accuracy measures 
include precision, error rates, number of correct and incorrect 
responses, whereas efficiency includes measures of time to 
complete predefined benchmark tasks. E.g., [18] compares three 
different visualization systems on different tasks in terms of 
solution time and accuracy. 

Usability testing: Usability tests typically evaluate 
visualizations to identify and solve user interface problems. 
Methods involve observing participants as they perform 
designated tasks using a ‘think aloud’ protocol, noting the 
usability incidents that may suggest incorrect use of the interface, 
and comparing results against a predefined usability specification 
[14].  Refer to [24] for a professional example. 

Metrics, Heuristics, and Models: Different from empirical 
evaluations are inspections of user interfaces by experts, such as 
with heuristics [21]. Examples of specific metrics for 
visualizations include expressiveness and effectiveness criteria 
[20], data density and data/ink [31], a variety of other criteria for 
representation and interaction [10], as well as high-level design 
principles [28].  Cognitive models, such as CAEVA [17], can be 
used to simulate visualization usage and thereby study the low-
level effects of various visualization techniques.  

Longitudinal and Field Studies: A longitudinal study of 
information visualization adoption by data analysts is presented in 
[13]. Their work suggests advantages when visualizations are 
used as complementary products rather than stand alone products. 
[25] examines users’ long-term exploratory learning of new user 
interfaces, with ‘eureka reports’ to record learning events. 

Thus, a range of evaluation methods have been used to measure 
effectiveness of visualizations [22].  In the literature, controlled 
experiments are the most prevalent for identifying and validating 
more effective visualizations.  Unfortunately, these studies 
evaluate visualizations based only on a set of predefined tasks.  October 10-12, Austin, Texas, USA 
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Test subjects are instructed to use the visualizations to find 
answers to specific questions that are given by the test admin-
istrators. While this approach is useful, it is too narrow to evaluate 
the benefits of open-ended discovery as needed by biologists.  

A primary purpose of visualization is to generate insight [29]. 
A measure of an effective visualization is its ability to generate 
unpredictable new insights that might not be the result of a 
preplanned benchmark task.  It can enable biologists to not only 
find answers but to also find questions, to identify new 
hypotheses. To evaluate this capability, visualizations could be 
measured in terms of insights. Hence, we developed an evaluation 
protocol that focuses on recognition and quantification of insights 
gained from actual exploratory use of visualizations. 
 
3 EXPERIMENT DESIGN 
The main aim of this study is to evaluate five popular 
bioinformatics visualization tools in terms of the insight that they 
provide to the users.  A 3x5 between-subjects design examines 
these two independent variables: 

1.  Microarray dataset, 3 treatments 
2.  Microarray visualization tool, 5 treatments 

 
3.1 Microarray Datasets  
To examine a range of data scenarios, we used data from three 
common types of gene-expression microarray experiments. The 3 
datasets are summarized in Table 1. The datasets are all 
quantitative, multi-dimensional data.  Values represent a gene’s 
measured activity level (or gene expression) with respect to a 
control condition. Hence, higher (lower) values indicate an 
increased (decreased) gene activity level. Since our study is 
focused on the interactive visualization portion of data analysis, 
the datasets were preprocessed, normalized, pre-filtered, and 
converted to the required formats (as discussed in [6] and [23]) in 
advance.  In general, the biologists’ goal is to identify and 
understand the complex interactions among the genes and 
conditions, essentially to reverse engineer the genetic code. 
 

Table 1: Microarray datasets in the experiment 
 

Dataset Description 
Time 
Series 

Data for 1060 genes over 5 time points of a viral 
infection cycle in human embryonic kidney cells 
[7]. (1060 rows, 5 columns) 

Viral 
Conditions  

Data for 861 genes for 3 related viral infections at 
8 hrs post infection of human lung epithelial cells 
[11]. (861 rows, 3 columns) 

Lupus vs. 
Control  

Data for 170 genes from 42 control (healthy) 
people and 48 people suffering from systemic 
lupus erythematosus (SLE), an autoimmune 
disease [1].  (170 rows, 90 columns) 

 
3.2 Microarray Visualization Tools 
For practical reasons, we limited this study to five microarray 
visualization tools. We chose the tools based on their popularity 
and availability. We attempted to select a set of tools that would 
span a broad range of analytical and visual capabilities and 
techniques. Cluster/Treeview (Clusterview) [9], TimeSearcher 
[16], and Hierarchical Clustering Explorer (HCE) [27] are free 
tools, while Spotfire® [30] and GeneSpring® [12] are 
commercial tools. Table 2 and Figures 1-5 summarize these tools.  

Clusterview (Figure 1) uses a heat-map visualization for both 
data overview and details. A compressed heat-map provides an 
overview of all values in the dataset, in row-column format. Users 
can select a part of the overview to study in more detail.  It is 
standard practice in bioinformatics to visually encode increased 

gene-expression values with a red brightness scale, decreased 
gene-expression values with a green brightness scale, and no-
change as black. As a slight variation, some tools use a continuous 
red-yellow-green scale with yellow in the no-change region. 
 

 
 

Figure 1: Cluster/Treeview (Clusterview) [9] 
 

TimeSearcher (Figure2) uses a parallel-coordinate visualization 
for data overview. Line graphs and detailed information are also 
provided for each individual data entity. TimeSearcher provides 
dynamic query widgets directly in the parallel-coordinate 
overview to support interactive filtering based on user specified 
time-series patterns. 

 

 
 

Figure 2: TimeSearcher [16] 
 

HCE (Figure 3) provides several different visualizations: scatter 
plots, histograms, heat maps, and parallel coordinate displays for 
data. HCE’s primary display uses dendrogram visualizations to 
present hierarchical clustering results. This places similar data 
items near each other in the tree display.  The visualizations are 
tightly coupled using the interactive concept of brushing and 
linking. Users can manipulate various properties of the 
visualizations and also zoom into areas of interest. 

Spotfire® (Figure 4) offers a wide range of visualizations: 
scatter plots, bar graphs, histograms, line charts, pie charts, 
parallel coordinates, heat maps, and spreadsheet views. Spotfire® 
presents clustering results in multiple views, placing each cluster 
in a separate parallel coordinate view. The visualizations are 
linked for brushing. Selecting data items in any view shows 
feedback in a common detail window. Users can zoom, pan, 
define data ranges, and customize visualizations. The fundamental 
interaction technique in Spotfire® is the dynamic query sliders, 
which interactively filter data in all views.  
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Figure 3: Hierarchical Clustering Explorer (HCE) [27]  
 
 

 
 

Figure 4: Spotfire® [30]  
 

 

 
 

Figure 5: GeneSpring® [12]  
 

GeneSpring® (Figure 5) provides the largest variety of 
visualizations for microarray data analysis: parallel coordinates, 
heat-maps, scatter plots, histograms, bar charts, block views, 
physical position on genomes, array layouts, pathways, 
ontologies, spreadsheet views, and gene-to-gene comparison. We 
could not use some of the visualizations, such as physical position 
and array layout views, for this experiment due to lack of 
sufficient data. The visualizations are linked for brushing. Users 
can manipulate the visualizations in several ways e.g., zooming, 

customizing visualizations by changing the color, range, etc.  
GeneSpring® also includes data clustering capabilities. 

 
Table 2: Summarizes the visualization and interaction techniques 

supported by each tool (O+D = Overview+Detail; DQ = Dynamic Queries). 
 

Tool Visual Representations Interactions
Cluster/ 
Treeview  

heat-map, cluster dendrogram O+D 

Time-
Searcher 

Parallel coordinates, line graph Brushing, 
O+D, DQ 

HCE  Cluster dendrogram, parallel 
coordinates, heat-map, scatterplot, 
histogram  

Brushing, 
Zooming, 
O+D, DQ 

Spotfire® 7.2 
Functional 
Genomics 
 

Parallel coordinates, heat-map, 
scatterplots (2D/3D), histogram, 
bar/pie chart, tree view, 
spreadsheet view, clustering 

Brushing, 
Zooming, 
O+D, DQ 

GeneSpring
® 5.0 
 

Parallel coordinate, heat-map, 
scatterplots (2D/3D), histogram, 
bar chart, block view, physical 
position view, array layout view, 
pathway view, spreadsheet view, 
compare gene to gene, clustering 

Brushing, 
Zooming 
 

 
3.3 Participants  
30 test participants volunteered from the university community. 
We allotted six participants per tool, with two per dataset per tool. 
We required all participants to have earned at least a Bachelor’s 
degree in a biological field and be familiar with microarray 
concepts. To prevent undue advantage and also to measure 
learning time, we assigned participants a tool that they had never 
worked with before. Based on their profiles, the participants fit 
into one of three categories summarized in Table 3. 
 

Table 3: Participant background and number for each category 
 

Category Participant Background N 
Domain 
Expert 

Senior researchers with extensive 
experience in microarray experiments and 
microarray data analysis.  Possess a Ph.D. 
in a biological field. 

10 

Domain 
Novice 

Lab technicians or graduate student 
research assistants, having an M.S. or B.S. 
in a biological field.  Some experience with 
microarray data analysis. 

11 

Software 
Developers 

Professionals who implement microarray 
software tools. Have an M.S. in a biological 
field and also M.S. in computer science. 

9 

 
3.4 Protocol and Measures 
To evaluate these tools in terms of their ability to generate insight, 
a new protocol and set of measures is used that combines 
elements of the controlled experiment and usability testing 
methodologies. This approach seeks to identify individual insight 
occurrences as well as overall amount of learning while 
participants analyze data in an open-ended think-aloud format.  
Also, we decided to focus on new users of the tools with only 
minimal tool training.  We have found that success in the initial 
usage period of a tool is critical for tool adoption by biologists. 

Each participant was assigned one dataset and one tool.  Before 
starting their analysis, participants were given a background 
description about the dataset. To reduce initial learning time, the 
participants were given a 15-minute tutorial about the 
visualization and interaction techniques of the tool. Participants 
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then listed some analysis questions they would typically ask about 
such a dataset. Then, they were instructed to continue to examine 
the data with the tool until they felt that they would not gain any 
additional insight. The entire session was videotaped for later 
analysis. Participants were allowed to ask the administrator about 
using the tool if they could not understand a feature.  The training 
in this protocol was intended to simulate how biologists often 
learn to use new tools from their colleagues.  

While they were working, participants were asked to comment 
on their observations, inferences and conclusions. Approximately 
every 15 minutes, participants were asked to estimate how much 
of the total potential insight they felt they had obtained so far 
about the data, on a scale of 0–100%. When they felt they were 
finished, participants were asked to assess their overall experience 
with the tool, including any difficulties or benefits.  

Later, we analyzed the videotapes to identify and codify all 
individual occurrences of insights, as described in the next 
subsection.  Table 4 summarizes the dependent variables. 
 

Table 4: Dependent measures 
 
1 User’s initial questions about the dataset 
2 Total time spent with the tool 
3 Amount learned (as a percentage), periodic and final  
4 List of insights and characteristics 
5 Visualization techniques used  
6 Usability issues  
7 Participant demographics 

 
3.5 Insight Definition and Characteristics 
To measure insights gained from visualization, a more rigorous 
definition and coding scheme is required. While the subjective 
‘amount learned’ metric provides a measure of overall insight 
level, a mechanism is needed to capture more specific individual 
insight occurrences.  Through a pilot study with 5 participants, we 
found that it is possible to recognize and characterize insights as 
they occur. We define an insight as an individual observation 
about the data by the participant, a unit of discovery.  These can 
be recognized in a think-aloud protocol. The following 
quantifiable characteristics of each insight can then be encoded 
for analysis.  Although we present them here in the context of 
biological and microarray data, this can be applied to other data 
domains as well. 
 
Characteristics of an insight: 
• Fact: The actual finding about the data. We counted distinct 

facts for each participant. 
• Time: The amount of time required to reach the insight. Initial 

training time is not included. 
• Domain Value: The value, importance, or significance of the 

insight.  Simple observations such as “Gene A is high in 
experiment B” are fairly trivial; whereas, more global 
observations of a biological pattern such as “deletion of the viral 
NS1 gene causes a major change in genes relating to cytokine 
expression” are more valuable.  The domain value was coded on 
a scale of 1 to 5 by a biology expert familiar with the results of 
all 3 datasets. In general, trivial observations earned 1-2 points, 
insights about a particular process earned an intermediate value 
of 3, and insights that confirmed, denied, or created a 
hypothesis earned 4 or 5 points. 

• Hypotheses: Some insights lead users to identify a new 
biologically-relevant hypothesis and direction of research. 
These are most critical because they suggest an in-depth data 
understanding, relationship to biology, and inference.  They 
lead biologists toward ‘closing the loop’ of the experimental 

process, in which data analysis feeds back into design of the 
next experimental iteration [15]. 

• Breadth vs. Depth: Breadth insights present an overview of 
biological processes, but not much detail; e.g., “there is a 
general trend of increasing variation in the gene expression 
patterns”. Depth insights are more focused and detailed; e.g., 
“gene A mirrors the up-down pattern of gene B, but is shifted in 
time”.  This also was coded by a domain expert. 

• Directed vs. Unexpected:  Directed insights are those that 
answer a specific question that the user was searching for.  
Unexpected insights are additional exploratory or serendipitous 
discoveries that were not specifically being searched for.  

• Correctness: Some insights are incorrect observations that 
result from misinterpreting the visualization.  This was coded by 
an expert biologist and visualization expert together. 

• Category: Insights were grouped into four main categories: 
overview (overall distributions of gene expression), patterns 
(identification or comparison across data attributes), groups 
(identification or comparison of groups of genes), and details 
(focused information about specific genes).  These categories 
were not predefined, but were identified from the experiment 
results after all insights were collected. 

 
The result of this coding is a single table containing all the 

insight occurrences and their characteristics, for each participant.  
Note that insights are distinct within a given participant. 
 
4 RESULTS 
Results are presented in terms of participants’ data questions, 
insights, visualization usage, and participant background. 
 
4.1 Initial Questions 
At the start of each session, participants were requested to 
formulate questions about the data that they expected the 
visualization to answer. Almost all the participants wanted to 
know how the gene expression changed and its statistical 
significance with each experimental condition, different 
expression patterns, and obtain pathway information and known 
literature for the genes of interest. More biologically specific 
questions focused on location of genes of interest on 
chromosomes and pathways. They said that it would be valuable 
to know what pathways show correlations.  

The participants working with time series data had questions 
that focused more on time related changes in gene expression. 
Most expert participants were interested in finding a set of genes 
that responded earlier to a treatment and was later followed by 
other genes. Rather than analyzing information for individual 
patients, the Lupus dataset users were more interested in 
comparing the overall expression between control and lupus 
groups. Most novice participants wanted to start by taking 
averages of both the groups to see what genes changed the most 
from one group to another. One expert participant said it would be 
interesting to see how patient characteristics such as their age, 
gender, and ethnic race affect and cause variance in the data.  

There were collectively 31 distinct questions. It was not 
possible to answer some of the questions during the experiment, 
due to insufficient data. GeneSpring® (31/31) and Spotfire® 
(27/31) can potentially address most of the questions posed by the 
participants.  

 
4.2 Insight Gained 
Figure 6 summarizes several aggregate measures of insight gained 
and usage time, combining all 6 participants and all 3 datasets for 
each visualization tool.  It shows the following measures: 
• Count (of insights):  the total number of insights acquired.   
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• Total Domain Value:  the sum of the domain value of all the 
insight occurrences. Together, higher total value and count 
indicate a more effective tool for providing useful insight. 

• Average Final Amount Learned:  the average of the 
participants’ final stated amount learned.  The amount learned is 
a percentage of total potential insight, as perceived by 
participants.  In contrast to total value and count, this metric 
gauges users’ belief about insight gained, and about how much 
the tool is not enabling them to discover. 

• Average Time to First Insight:  the average time into the 
session, in minutes, of the first insight occurrence of each 
participant.  Lower times suggest that participants are able to 
get immersed in the data more quickly, and thus may indicate a 
faster tool learning time. 

• Average Total Time:  the average total time each user spent 
using the tool until they felt they could gain no more insight.  
Lower times indicate a more efficient tool, or possibly that 
participants gave up on the tool due to lack of further insight. 
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Figure 6: Count of insights, total insight value, average final amount 
learned, average time to first insight, and average total time for 
each tool. /  indicate significantly better/worse differences.  
Y-axis arrows  indicate direction of better performance. 

Since this evaluation method is more qualitative and subjective 
than quantitative, and the number of participants is limited, 
general comparison of tendencies in the results is most 
appropriate.  However, we include some statistical analysis that 
provides useful indicators. Insight value was highest for 
Spotfire®. Participants using Spotfire® gained significantly more 
insight value than with GeneSpring® (p<0.05).  Similarly, the 
count of insights was highest for Spotfire® and lowest for HCE.  
Participants felt they learned the most from the data using 
Spotfire®. Spotfire® users felt they learned significantly more 
from the data than participants using HCE (p<0.05) and 
Clusterview (p<0.05).  The participants using Clusterview took a 
very short time to reach first insight. TimeSearcher and Spotfire® 
were also fairly quick to first insight, while HCE and 
GeneSpring® took twice as long on average.  Clusterview 
participants took significantly less time (p<0.01) to reach the first 
insight than the other users, while GeneSpring® took significantly 
longer (p<0.01). In general, Clusterview users finished quickly 
while GeneSpring® users took twice as long. 
 

Breadth vs. Depth: Though we had initially thought this to be 
an interesting criterion, on data analysis we found that most user 
comments were of the type ‘breadth’. 

Directed vs. Unexpected Insights: The participants using 
HCE with the Viral dataset noticed several facts about the data 
that were completely unrelated to their initial list of questions. 
Clusterview provided a few unexpected insights from the Lupus 
dataset. TimeSearcher provided unexpected insights about the 
Time series data, whereas Spotfire® had one each for Time series 
and Lupus. 

Hypotheses:  Only a few insights led participants to new 
biological hypotheses. These insights are most vital because they 
suggest future areas of research and result in real scientific 
contributions. For example, one participant commented that parts 
of the Time series data showed a regular cyclic behavior. He 
searched for genes that showed similar behavior at earlier time 
points, but could not find any. He offered several alternative 
explanations for this behavior related to immune system 
regulation, and said that it would compel him to perform follow-
up experiments to attempt to isolate this interesting periodicity in 
the data.  Spotfire® resulted in one hypothesis for each dataset, 
thus a total of three.  Clusterview also led participants to a 
hypothesis for the Viral and Lupus datasets. 

Incorrect Insights:  HCE proved very helpful to participants 
working with the viral dataset. However, participants working 
with the Time series or Lupus datasets could not get much insight 
from the data. When prompted to report their data findings, they 
stated some observations about the data that were incorrect.  None 
of the other tools resulted in incorrect findings. 

Table 6 shows the total number of unexpected insights, 
hypotheses generated, and incorrect insights from the insight 
occurrences for each tool. 

 
 

Table 6: Unexpected, hypotheses, and incorrect insights 
 

Visualization 
Tool 

Unexpected 
Insights 

Hypotheses 
Generated 

Incorrect 
Insights 

Clusterview 3 2 0 
TimeSearcher 3 1 0 
HCE 5 1 2 
Spotfire® 2 3 0 
GeneSpring® 0 0 0 

 

 Cluster-    Time-    Gene-
  View Searcher HCE Spotfire® Spring®
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Overall, Spotfire® resulted in the best general performance, 
with higher insight levels and rapid insight pace.  Clusterview and 
TimeSearcher appear to specialize in rapid insight generation, but 
to a limit.  Using GeneSpring®, participants could infer the 
overall behavior of the data and the patterns of gene expressions. 
However because the participants found the tool complicated to 
use, most of them were overly consumed with learning the tool 
rather than analyzing the data, and were frustrated.  They had 
difficulty getting beyond simple insights. HCE’s strengths will 
become clear in the next two sections. 
 
4.3 Insight per Dataset 
Now we compare the tools within each dataset. 

Time series data:  In general, Spotfire® and TimeSearcher 
performed the best of the 5 tools in this dataset.  Participants using 
Spotfire® and TimeSearcher felt they learned significantly more 
(p<0.05) from Time series data than the other tools.  Participants 
using Spotfire® felt they learned more from the data (73%) 
compared to TimeSearcher (53%). Both Spotfire® and 
TimeSearcher had nearly equivalent performance in terms of 
value and number of insights. Time to first insight was slightly 
lower for TimeSearcher (4 min) as compared to Spotfire® (6 
min). At the bottom, participants using HCE took significantly 
longer (p<0.01) to reach the first insight than the other tools.  
Participants using GeneSpring® took significantly longer 
(p<0.05) than TimeSearcher and Clusterview.  

Virus data: HCE proved to the best tool for this dataset. 
Participants using HCE had better performance in terms of insight 
value as compared to other users. However, there were no 
significant differences between the other users. HCE provided 5 
unexpected insights that were different from the initial 
information participants were searching for in the dataset. 

Lupus data: Participants using Clusterview and Spotfire® had 
more insight value as compared to the other tools (p<0.05) in this 
data.  
 
4.4 Tools vs. Datasets 
This section examines individual tools across the three datasets.  
TimeSearcher and HCE had interesting differences among the 
datasets (Figure 7), while the other tools were well rounded. 
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Figure 7: TimeSearcher and HCE specialize in the Time series and 
Viral datasets respectively. 

 

TimeSearcher: Participants using TimeSearcher performed 
comparatively best with the Time series data as compared to the 
other two datasets. With Time series data, they had over double 
the value and number of insights than the participants using Viral 
and Lupus datasets. 

HCE: In contrast, participants using HCE did best on the Viral 
data.  On this dataset, they had a significant better performance on 
insight value (p<0.01), number of insights (p<0.05) and time to 
first insight (p<0.05) as compared to the other datasets. They also 
felt they learned much more from the data. Participants using 
Lupus data spent significantly less overall time with the tool 
(p<0.05) as they felt they could not learn much from the data.  

 
4.5 Insight Categories 
Though a wide variety of insights were made, most could be 
categorized into a few basic groups through a clustering process. 
Table 7 summarizes the number of each type of insight by tool. 

Overall Gene Expression: These described and compared 
overall expression distributions for a particular experimental 
condition.  For example, a participant analyzing Time series data 
reported that “at time points 4 and 8 a lot of genes are up 
regulated, but at time point 6 a lot are down regulated”. 

Expression Patterns: Most participants considered the ability 
to search for patterns of gene expressions very valuable. Most 
started by using different clustering algorithms (e.g., K-Means, 
SOMS, Hierarchical Clustering) provided by the tools to extract 
the primary patterns of expression. They compared genes showing 
different patterns.  For example, some participants noted that 
while most genes showed higher expression value for Lupus 
group as compared to Control group, there were other genes that 
were less expressed for the Lupus group. They thought it would 
be interesting to obtain more information about these genes in 
terms of their functions and the pathways they belong to. 

Grouping: Some users, mainly those working with Spotfire® 
and GeneSpring®, grouped genes based on some criteria, e.g. a 
user working with Spotfire® wanted to know all genes expressed 
similarly to the gene HSP70. Users working with GeneSpring® 
used gene ontology categories to group genes. GeneSpring® 
provides different ways in which users can group their data. 
Participants found this functionality very helpful. Also most of the 
participants were very pleased to learn that they could link the 
biological information with the groups. 

Detail Information: A few users wanted detailed information 
about particular genes that were familiar to them. For Time series 
data, a user noticed about 5% of genes high at 1.5 hr were also 
high at 12 hr and followed a regular cycle. He looked up the 
annotations for a few of these genes and tried to obtain more 
information about them to see if they could be responsible for the 
cyclic nature of the data.  

 
Table 7: Total number of insights in each category 

 
Tool Overview Patterns Groups Detail
Clusterview 9 10 0 2 
Timesearcher 10 8 0 3 
HCE 6 5 0 1 
Spotfire® 13 10 1 1 
GeneSpring® 5 8 4 1 

 
 
4.6 Visual Representations and Interaction 
Spotfire® participants preferred the heat-map visual 
representation, whereas GeneSpring® users preferred the parallel 
coordinate view. This is despite the fact that both of these tools 
offer both representations.  Most of these users performed the 
same analyses, but using different views.  
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We noticed that for the Lupus dataset Spotfire® and 
Clusterview users liked the heat-map visualization. The heat-map 
allowed them to group Control and Lupus data neatly into two 
distinct groups and they could easily infer patterns within and 
across both groups. Participants using these tools showed a higher 
performance on this dataset using these visualizations. This 
finding is strengthened by the fact that both TimeSearcher and 
GeneSpring® users showed average performance on this dataset. 
Users of these tools used parallel coordinate visualizations to 
analyze the data. 

We noticed that even though tools like Spotfire® and 
GeneSpring® provide a wide range of visualizations to users, 
only a few of these were used significantly during the study. Most 
users preferred visualizations showing outputs of clustering 
algorithms, such as provided by Clusterview, Spotfire®, and 
GeneSpring®. These enabled the users to easily see different 
patterns in the data. However, many said that it would be more 
helpful to them if the interaction capabilities of this representation 
were increased, e.g. to better enable comparison of the groups, 
subdividing, etc. 

HCE’s primary overview presents the data in a dendogram 
heat-map that is re-ordered based on the results of hierarchical 
clustering algorithms. Columns and samples with the most similar 
expression values are placed together. Thus, for both the Time 
series and Lupus datasets, where a particular column arrangement 
is useful to recognize changes across the experimental conditions, 
HCE showed poorer performance.  Users focused primarily on the 
clustering, and apparently did not consider the potential benefits 
of turning off that feature. 
  
4.7 Participants’ Background 
One might conjecture that participants with more domain 
experience or software development experience would gain more 
insight from the data.  Yet, we found that the insight value and 
total number of insights did not appear to depend on participant 
background.  Averages were similar, and no significant difference 
between participant categories was detected.  However, software 
developers on average felt that they learned less from the data as 
compared to others, whereas domain novices felt they learned 
more from the data.  Novices also spent comparatively more time 
in the study as compared to others. A noticeable difference was in 
the participants’ behavior during the experiment. Novice 
participants needed more prompting to make comments about the 
datasets. They were less confident to report their findings. 
 
5 DISCUSSION 
This study attempts to measure insight. We accomplish this by 
defining insight, identifying several measurable characteristics of 
insight, and establishing methods to recognize insight. These 
measures are based on our observations of scientists doing data 
analysis. This measurement process also enables recognition of 
qualitative aspects of user behavior.  Clearly, true insight has a 
much broader meaning.  However, although our definition is not 
comprehensive, it does provide an approximation of participants’ 
insight. This, in turn, has enabled us as evaluators to gain insight 
into the effectiveness of these visualization tools. 
 A serious shortcoming of the tools is that they do not 
adequately link the data to biological meaning. The fact that 
domain experts performed on par with domain novices, and the 
small numbers of hypotheses generated, indicates that the tools 
did not leverage the domain expertise well. We hypothesized that 
someone more expert in biology would gain more from 
visualizations than a beginner. We were also curious about 
whether software development experience would lead to better 
usage of the tools. However, these background differences did not 
reveal themselves in the insights generated. If the tools could 

provide a more information-rich environment, such as linking data 
directly to public gene databases or literature sources, expert 
biologists could better exploit their domain knowledge to 
construct higher level, biologically relevant hypotheses. 
 Choice of visualization tool can have major impacts.  Both 
Spotfire® and Clusterview participants resulted in equivalent 
insight from the Lupus dataset. However, participants using 
Spotfire® felt they learned much more from the data as compared 
to Clusterview. Analyzing data in multiple visual representations 
gave Spotfire® users more confidence that they did not miss any 
information. Whereas, Clusterview users were more skeptical 
about their progress, believing that they must be missing 
something.  A simple visualization tool used on an appropriate 
dataset can have performance comparable to more comprehensive 
software containing many different visualizations and features.  
 Free research software like TimeSearcher and HCE tend to 
address a smaller set of closely related tasks.  Hence, they provide 
excellent insight on certain datasets.  Also, since they are focused 
on specific tasks, they have simpler user interfaces that emphasize 
a certain interaction model.  This reduces the learning time and 
enables users to generate insights quickly.  Spotfire®, despite 
having a large feature set, has a learning time almost equivalent to 
the simple tools, which is commendable.  This is likely due to 
Spotfire’s® unified interaction model.  The brushing and dynamic 
query concepts were quickly learned by users, and resulted in 
early rapid insight generation. 
 The design of interaction mechanisms in visualization is 
critically important.  Usability can outweigh the choice of visual 
representation. Spotfire® users mainly focused on the heat-map 
representation, while GeneSpring® users focused on the parallel 
coordinates, even though both tools support both representations.  
The primary reason for this, based on comments from users, was 
that users preferred parallel coordinates but Spotfire®’s parallel 
coordinates view employs a poorly designed selection 
mechanism.  Selected lines in its parallel coordinates results in an 
occluding visual highlight that made it very difficult for users to 
determine which genes were selected.  The ability to select and 
group genes was the most common interaction that users 
performed.  The grouping of genes into semantic groups is a 
fundamental need in bioinformatics visualization tools.  
GeneSpring® provided useful grouping features that enabled 
more insights in the ‘groups’ category.  More tools need better 
support for grouping items, based on interactive selections as well 
as computational clustering, and managing groups.  GeneSpring® 
is the most feature-rich tool of the five, and therefore perhaps the 
most difficult to learn.  However, even though users tended to 
focus on a small number of basic visualization features, usability 
issues (such as the higher quantity of clicks required to 
accomplish tasks) reduced their overall insight performance. 

Clustering was a very useful feature throughout, but care should 
be taken to provide non-clustered overviews first.  As in HCE, 
clustering can potentially bias users into a particular line of 
thought too quickly.  In comparing Spotfire® and Clusterview, 
users were also more confident when they could confirm their 
findings between clustered and non-clustered views of Spotfire®. 
 We noticed that an important factor in gaining insight is user 
motivation. Clearly, participants in our study did not analyze the 
data with as much care as those who had designed the 
experiments.  They mainly focused on discovering the overall 
effects in the data, but were not sufficiently motivated to extreme 
details. Most of the insights generated were classified as breadth 
rather than depth.  However, the visualizations were able to 
provide sizeable number of breadth insights in spite of low 
motivation levels. 
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6 CONCLUSIONS 
Our study suggests the following major conclusions for life 
scientists, visualization designers, and evaluators.  

Biologists: A visualization tool clearly influences the insight 
gained. Hence, it is imperative that the appropriate tool for the 
dataset be chosen. We sought to answer the question of which is 
the best tool to use. Some tools work more effectively with certain 
types of data. Both Timesearcher and HCE performed better with 
the Time series and Viral datasets respectively, for others they 
provided below average results. Thus, dataset dictates which tool 
is best to use. Additionally, larger software packages like 
Spotfire® and GeneSpring® work consistently across different 
datasets. If a researcher needs to work with multiple kinds of data, 
Spotfire® and GeneSpring® would be better. But, if a researcher 
needs to work with just one kind of data, more focused tools can 
provide better results in a much faster time frame.  
 Visualization Designers: Interaction techniques play a key role 
in determining visualization effectiveness. It is imperative that 
users are able to access and link biological information to their 
data. Designers should emphasize consistent usable interaction 
design models with clear visual feedback. The grouping 
interaction and clustering is a must. Identify which visualization 
technique in a given software is used the most and improve it.  
 Evaluators: The main purpose of visualization is to provide 
insight. This can be difficult to measure. Our insight definition 
allowed us to quantify insight using different characteristics. This 
can prove helpful for future studies for analyzing visualizations 
for effectiveness. 
 
7 FUTURE WORK 
In the real world, researchers spend days, weeks and often months 
analyzing their data. While this short-term study was useful for 
gauging early insight generation, current problems with this 
approach include lack of sufficient training and high coding 
effort. It would be very valuable to conduct a longitudinal study 
that records each and every finding of the users over a longer 
period of time to see how visualization tools influence knowledge 
acquisition. These studies should be conducted with researchers 
analyzing their own experimental results for the first time. [25] 
and [18] present such longitudinal studies that included frequent 
user interviews, diary studies and ‘Eureka’ reports. Such studies 
could identify the broader information needs, and help to develop 
more meaningful tools that leverage biological knowledge and 
users’ domain expertise. Moreover, the analysis of high-
throughput data is in its infancy and improved analysis 
frameworks within the life sciences are needed.  
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