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ABSTRACT

Visual clutter denotes a disordered collection of graphical entities in
information visualization. Clutter can obscure the structure present
in the data. Even in a small dataset, clutter can make it hard for the
viewer to find patterns, relationships and structure.

In this paper, we define visual clutter as any aspect of the vi-
sualization that interferes with the viewer’s understanding of the
data, and present the concept of clutter-based dimension reorder-
ing. Dimension order is an attribute that can significantly affect a
visualization’s expressiveness. By varying the dimension order in a
display, it is possible to reduce clutter without reducing information
content or modifying the data in any way.

Clutter reduction is a display-dependent task. In this paper, we
follow a three-step procedure for four different visualization tech-
niques. For each display technique, first, we determine what consti-
tutes clutter in terms of display properties; then we design a metric
to measure visual clutter in this display; finally we search for an
order that minimizes the clutter in a display.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces I.5.3 [Pattern Recogni-
tion]: Clustering—Similarity Measures

Keywords: Multidimensional visualization, dimension order, vi-
sual clutter, visual structure.

1 INTRODUCTION

Visualization is the graphical presentation of information with the
goal of helping the user gain a qualitative understanding of the in-
formation. A good visualization clearly reveals structure within the
data and thus can help the viewer to better identify patterns and de-
tect outliers. Clutter, on the other hand, is characterized by crowded
and disordered visual entities that obscure the structure in visual
displays. In other words, clutter is the opposite of structure; it cor-
responds to all the factors that interfere with the process of finding
structures. Clutter is certainly undesirable since it hinders view-
ers’ understanding of the content of the displays. However, when
the dimensions or number of data items grow high, it is inevitable
for displays to exhibit some clutter, no matter what visualization
method is used.

To address this problem, many clutter reduction techniques have
been proposed, such as multi-resolution approaches [23, 7, 24], di-
mensionality reduction approaches [9, 12, 22, 11], and distortion
approaches [16, 14]. However, they either sacrifice the integrity of
the data or fail to generate an unbiased representation of the data.
In order to complement these approaches by reducing clutter in tra-
ditional visualization techniques while retaining the information in
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the display, we propose a clutter reduction technique using dimen-
sion reordering.

In many multivariate visualization techniques, such as parallel
coordinates [8, 21], glyphs [1, 15], scatterplot matrices [3] and
pixel-oriented methods [10], dimensions are positioned in some
one- or two-dimensional arrangement on the screen [25]. Given
the 2-D nature of this medium, some ordering or organization of
the dimensions must be assumed. This organization can have a
major impact on the expressiveness of the visualization. Differ-
ent orderings of dimensions can reveal different aspects of the data
and affect the perceived clutter and structure in the display. Thus
completely different conclusions may be drawn based on each dis-
play. Unfortunately, in many existing visualization systems that en-
compass these techniques, dimensions are usually ordered without
much care. In fact, dimensions are often displayed by the default
order in the original dataset. Manual dimension ordering is avail-
able in some systems. For example, Polaris [18] allows users to
manually select and order the dimensions to be mapped to the dis-
play. Similarly, in XmdvTool [25], users can manually change the
order of dimensions from a reconfigurable list of dimensions. How-
ever, the exhaustive search for the best ordering is tedious even for a
modest number of dimensions. Therefore, automatic clutter-based
dimension ordering techniques that would remedy this shortcoming
of current tools are needed.

Clutter reduction is a visualization-dependent task because visu-
alization techniques vary largely from one to another. The basic
goal of this paper is to present clutter measuring and reduction ap-
proaches for several of the most popular visualization techniques,
namely parallel coordinates [8, 21], scatterplot matrices [3], star
glyphs [17], and dimensional stacking [13]. Although we only
chose these visualization techniques to experiment with, there are
many more traditional visualization techniques that could benefit
from this concept.

In order to automate the dimension reordering process for a dis-
play, we are concerned with three issues: (1) determining the way
clutter manifests itself in the display, (2) designing a metric to mea-
sure visual clutter, and (3) arranging the dimensions for the purpose
of clutter reduction. The solutions we provide are specifically tuned
to each individual visualization technique. In some techniques, we
reduce the level of noise in the display; in other cases we increase
the number of clusters. For each technique we will follow a simi-
lar procedure. First we determine the visual characteristics that we
would label as clutter. Next, we carefully define a metric for mea-
suring clutter. Then we find the dimension order that minimizes the
clutter in a display.

The remainder of this paper is organized as follows. Section 2
provides a review of related work. Sections 3, 4, 5, and 6 discuss
the clutter definitions and measures for four different visualization
techniques respectively. In Section 7, algorithms for reordering are
presented. Conclusions and future work are presented in Section 8.

2 RELATED WORK

Many approaches have been proposed to overcome the clutter prob-
lem. Distortion [16, 14] is a widely used technique for clutter reduc-
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tion. In visualizations supporting distortion-oriented techniques,
the interesting portion of the data is given more display space. The
problem with this technique is that the uninteresting subset of the
data is squeezed into a small area, making it difficult for the viewer
to fully understand it. Multi-resolution approaches [23, 7, 24] are
used to group the data into hierarchies and display them at a desired
level of detail. These approaches do not retain all the information in
the data, since many details will be filtered out at low resolutions.

High dimensionality is another source of clutter. Many ap-
proaches exist for dimension reduction. Principal Component
Analysis [9], Multi-dimensional Scaling [12, 22], and Self Orga-
nizing Maps [11] are popular dimensionality reduction techniques
used in data and information visualization. Yang et al. [27] pro-
posed a visual hierarchical dimension reduction technique that cre-
ates meaningful lower dimensional spaces with representative di-
mensions from the original data space instead of generating new
dimensions. These techniques generate a lower dimensional sub-
space to reduce clutter but some information in the original data
space is also lost.

In information visualization, many visual factors can be ordered
to enhance the displays. Friendly et al. [6] designed a general
framework for ordering information, including arrangement of vari-
ables, according to the desired effects or trends. Dimension order-
ing has also been studied in [2, 26]. Ankerst et al. [2] proposed a
method to arrange dimensions according to their similarities so that
similar ones are adjacent to each other. They used Euclidean dis-
tance as the similarity measure, proved that the arrangement prob-
lem is NP-complete, and applied heuristic algorithms to search for
the optimal order. Yang et al. [26] imposed a hierarchical struc-
ture over the dimensions themselves, grouping a large number of
dimensions into a hierarchy so that the complexity of the order-
ing problem is reduced. User interactions are then supported to
make it practical for users to actively decide on dimension reduc-
tion and ordering in the visualization process. However, in those
approaches, dimensions are reordered according to only one partic-
ular measure, the similarity between dimensions. In many visual-
ization techniques, the overall clutter in the display is not always
related to similarity between dimensions. Ordering dimensions ac-
cording to the best correlation does not guarantee the least clutter.
But their idea of using dimension ordering inspired our work of
ordering dimensions to improve visualization quality.

3 PARALLEL COORDINATES

Parallel coordinates is a popular multivariate visualization tech-
nique [8, 21]. In this method, each dimension corresponds to an
axis, and the N axes are organized as uniformly spaced vertical or
horizontal lines. A data element in an N-dimensional space mani-
fests itself as a connected set of points, one on each axis. Thus a
polyline is generated for representing one data point.

3.1 Clutter Analysis of Parallel Coordinates

In the parallel coordinates display, as the axes order is changed, the
polylines representing data points take on very distinct shapes. In
Figures 1 and 2, the two displays depict the same dataset with dif-
ferent dimension orders. As can be seen in the figure, a parallel
coordinates display makes inter-dimensional relationships between
neighboring dimensions easy to see, but does not disclose relation-
ships between non-adjacent dimensions. In a full display of parallel
coordinates without sampling, filtering or multi-resolution process-
ing, if polylines between two dimensions can be naturally grouped
into a set of clusters, the user will likely find it easier to comprehend
the relationship between them. Instead, if there are many lines that
don’t belong to any cluster, the space between the two dimensions
can be very cluttered. These polylines don’t help the viewer to find

patterns and discover relationships. Those data points that don’t
belong to any cluster are called outliers. It is true that one of the
advantages of parallel coordinates visualization is to help find out-
liers, but in our case, a lot of outliers between a pair of dimensions
indicates that there is little relationship between the two of them.
Since our goal is to disclose more relationships and patterns be-
tween dimensions, we want to minimize the impact from outliers,
in other words, we carefully order the dimensions to avoid them.

3.2 Clutter Measure in Parallel Coordinates

3.2.1 Defining and Computing Clutter

Due to the fact that outliers often obscure structure and thus con-
fuse the user, clutter in parallel coordinates can be defined as the
proportion of outliers against the total number of data points. To
reduce clutter in this technique, our task is to rearrange the dimen-
sions to minimize the outliers between neighboring dimensions. To
calculate the score for a given dimension order, we first count the
total number of outliers between neighboring dimensions, Soutlier.
If there are n dimensions, the number of neighboring pairs for a
given order is n− 1. The average outlier number between dimen-
sions is defined to be Savg = Soutlier/(n− 1). Let Stotal denote the
total number of data points. The clutter C , defined as the proportion
of outliers, can then be calculated as follows:

C = Savg/Stotal =
Soutlier

n−1

Stotal

(1)

Since n−1 and Stotal are both fixed for a given dataset, dimen-
sion orders that reduce the total number of outliers also reduce clut-
ter in the display according to our notion of clutter.

Now we are faced with the problem of how to decide if a data
item is within a cluster or is an outlier. Since we have restricted
the notion of clutter to the number of outliers within neighboring
pairs of dimensions, we can use the normalized Euclidean distances
between data points to measure their closeness. If a data point does
not have any neighbor whose distance to it is less than threshold
t, we treat it as an outlier. In this way, we are able to find all the
data points that don’t have any neighbors within the distance t in
the specified two-dimensional space. If the number of data points
is m, this is done in O(m2) time. We do this for every pair of the n
dimensions and store the outlier numbers in a outlier matrix M. The
total time for building this matrix is O(m2n2). Given a dimension
order, we can then decide the clutter in the display by adding up
outlier numbers between neighboring dimensions.

Instead of letting the user specify the threshold, we could have
decided it based on the dataset, or develop algorithms that don’t
involve thresholds. However, since we want to give the user more
flexibility and interaction when ordering the dimensions, we be-
lieve that allowing the user to decide the thresholds of cluster width
is preferable. Thus the threshold here and those in the following
chapters all can be user-defined, though with a fixed default value.

3.2.2 The Optimal Dimension Order

Optimal dimension ordering would be to select the one dimension
order that minimizes visual clutter. In a given dimension order,
adding up outlier numbers between neighboring dimensions takes
O(n) time. Since the optimal dimension ordering algorithm is an
exhaustive search algorithm with O(n!) time, the search time in-
volved is O(n∗n!).

3.3 Example

Figures 1 and 2 both represent the Cars dataset. In Figure 1 the data
is displayed with the default dimension ordering. Figure 2 displays
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Figure 1: Parallel coordinates visualization of Cars dataset. Outliers are highlighted with red in (b).

Figure 2: Parallel coordinates visualization of Cars dataset after clutter-based dimension reordering. Outliers are highlighted with red in (b).

the data after being processed with clutter-based ordering. In the
rightmost image in each figure, polylines highlighted in red are out-
liers according to our clutter metric. With a glimpse we can identify
more outliers in the original visualization than the improved one. It
is also clear that, in the new display, neighboring dimensions are
more tightly related. In addition, the data points are better sepa-
rated and thus it is easier for the viewer to find patterns.

4 SCATTERPLOT MATRICES

Scatterplot matrices are one of the oldest and most commonly used
methods to project high dimensional data to 2-dimensions [1]. In
this method, N ∗ (N −1)/2 pairwise parallel projections are gener-
ated, each giving the viewer a general impression regarding rela-
tionships within the data between pairs of dimensions. The projec-
tions are arranged in a grid structure to help the user remember the
dimensions associated with each projection.

4.1 Clutter Analysis in Scatterplot Matrices

In clutter reduction for scatterplot matrices, we focus on finding
structure in plots rather than outliers, because the overall shape and
tendency of data points in a plot can reveal a lot of information.
Some work has been done in finding structures in scatterplot visu-

alizations. PRIM-9 [19] is a system that makes use of scatterplots.
In PRIM-9 [19] data is projected onto a two-dimensional subspace
defined by any pair of dimensions. Thus the user can navigate all
the projections and search for the most interesting ones. Automatic
projection pursuit techniques [5] utilize algorithms to detect struc-
ture in projections based on the density of clusters and separation
of data points in the projection space to aid in finding the most in-
teresting plots.

With a matrix of scatterplots, users are not only able to find plots
with structure, but also can view and compare the relationships be-
tween these plots. Since all orthogonal projections are displayed
on the screen, changing the dimension order does not result in dif-
ferent projections, but rather a different placement of the pairwise
plots. In practice, it will be beneficial for the user to have projec-
tions that disclose a related structure to be placed next or close to
each other in order to reveal important dimension relationships in
the data. To make this possible, we have defined a clutter measure
for scatterplot matrices. The main idea is to find the structure in all
2-dimensional projections and use it to determine the position of di-
mensions so that plots displaying a similar structure are positioned
near each other.

Figure 3 gives two views of a scatterplot matrix visualization. In
this type of visualization, we can separate the dimensions into two
categories: high-cardinality dimensions and low-cardinality dimen-
sions. In high-cardinality dimensions, data values are often contin-
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Figure 3: Scatterplot matrices visualization of Cars dataset. In (a) dimensions are randomly positioned. After clutter reduction (b) is generated.
The first four dimensions are ordered with the high-cardinality dimension reordering approach, and the other three dimensions are ordered with
low-cardinality approach.

uous, such as height or weight, and can take on any real number
within the range. In low-cardinality dimensions, data values are
often discrete, such as gender, type, and year. These data points of-
ten take a small number of possible values. It is often perceived that
plots involving only high-cardinality dimensions will place dots in a
scattered manner while plots involving low-cardinality dimensions
will place dots in straight lines because a lot of data points share
the same value on this dimension. In this paper, we determine if a
dimension is high or low-cardinality depending on the number of
data points and their possible values. Let mi denote the number of
possible data values on the ith dimension, and m denote the total
number of data points. If mi ≥

√
m, dimension i is considered to be

of high-cardinality, otherwise it is low-cardinality.

We will treat high-cardinality and low-cardinality dimensions
separately because they generate different plot shapes. The clutter
definition and clutter computation algorithms for these two classes
of dimensions will differ from each other.

4.2 High-Cardinality Clutter Measure in Scatterplot Matrices

4.2.1 Defining and Computing Clutter

The correlation between two variables reflects the degree to which
the variables are associated. The most common measure of correla-
tion is the Pearson Correlation Coefficient, which can be calculated
as:

r =
∑i (xi −xm)(yi −ym)

√

∑i (xi −xm)2
√

∑i (yi −ym)2
(2)

where xi and yi are the values of the ith data point on the two
dimensions, and xm and ym represent the mean value of the two
dimensions.

Since plots similarly correlated will likely display a similar pat-
tern and tendency, we can calculate the correlations for all the
two-dimensional plots (in fact half of them because the matrix is
symmetric along the diagonal), and reorder the dimensions so that
plots whose correlation differences are within threshold t are dis-
played as close to each other as possible. To achieve this goal,
we define the sum of the distances between similar plots to be the
clutter measure. In our implementation, we define the plot side
length to be 1 and calculate the distance between plots X and Y us-

ing
√

(RowX −RowY )2 +(ColumnX −ColumnY )2. For example,
in Figure 4, the distance between similar plots A and B will be
√

(1−0)2 +(1−0)2 =
√

2. Larger distance sum means similar
plots are more scattered in the display, thus the view is more clut-
tered.

Figure 4: Illustration of distance calculation in scatterplot matrices.

In the high-cardinality dimension space, our approach to calcu-
late total clutter for a certain dimension ordering is as follows. Let
pi be the ith plot we visit. Let threshold t be the maximum corre-
lation difference between plots that can be called ”similar”. Note
that we are only concerned with the lower-left half of the plots, be-
cause the plots are symmetric along the diagonal. The plots along
the diagonal will not be considered because they only disclose the
correlations of dimensions with themselves. This is always 1.

In a fixed matrix configuration, we do the following to compute
the clutter of the display. First, a correlation matrix M(n,n) is gen-
erated for all n high-cardinality dimensions. M[i][ j] represents the
Pearson correlation coefficient for the plot on the ith row and jth
column. If data number is m, the complexity of building up this
matrix is O(m ∗ n2). Then, for any plot pi, we find all the plots
that have a similar correlation with it, i.e, the differences between
their Pearson correlation coefficients with pi’s are within threshold
t. This process will take O(n3). We store this information so we
only have to do it once.

4.2.2 The Optimal Dimension Order

We get a total distance for any scatterplot matrix display. With
this measure, comparisons between different displays of the same
data can be made. Unlike the one-dimensional parallel coordinates
display, we have to calculate distances for every pair of plots. If a
pair of plots has similar correlation, their distance is added to the
total clutter measure of the display. This is an O(n2) process. An
optimal dimension order can be achieved by an exhaustive search
with complexity O(n!). Therefore the total computing time will be

O(n2 ∗n!).

4.3 Low-Cardinality Clutter Measure in Scatterplot Matrices

4.3.1 Defining and Computing Clutter

In low-cardinality dimensions, we also want to place similar plots
together. But we use a different clutter measure from high-
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cardinality dimensions.
For plots with low-cardinality dimensions, the higher the car-

dinality, the more crowded the plot seems to be. Therefore, in-
stead of navigating all dimension orders and searching for the best
one, we will order these dimensions according to their cardinalities.
Dimensions with higher cardinality are positioned before lower-
cardinality dimensions. In this way, plots with similar density are
placed near each other. This satisfies our purpose for clutter reduc-
tion. The dot density of plots will appear to decrease gradually,
resulting in less clutter, or more perceived order, in the view.

4.3.2 The Optimal Dimension Order

With low-cardinality dimensions, the dimension reordering can be
envisioned as a sorting problem. With a quick sort algorithm, it can
be achieved within O(n∗ log n) time.

4.4 Example

From Figure 3 we notice that plots generated by two high-
cardinality dimensions are very different in pattern with plots in-
volving one or two low-cardinality dimensions. We believe that
separating the high and low-cardinality dimensions from each other
is useful in identifying similar low-cardinality dimensions and find-
ing similar plots in the high-cardinality dimension subspace.

5 STAR GLYPHS

5.1 Clutter Analysis in Star Glyphs

A glyph is a representation of a data element that maps data values
to various geometric and color attributes of graphical primitives or
symbols [15]. XmdvTool [25] uses star glyphs [17] as one of its
four visualization approaches. In this technique, each data element
occupies one portion of the display window. Data values control the
length of rays emanating from a central point. The rays are joined
by a polyline drawn around the outside of the rays to form a closed
polygon.

In star glyph visualization, each glyph represents a different
data point. With dimensions ordered differently, the glyph’s shape
varies. Since glyphs are stand-alone graphical entities, we consider
reducing clutter here as to make those single data points overall
seem more structured. Alternatively we could have focused on
glyph placement as a means of reducing clutter. Gestalt Laws are
robust rules of pattern perception [20]. They state that similarity
and symmetry are two factors that help viewers see patterns in the
visual display. We call a glyph well structured if its rays are ar-
ranged so that they have similar length to their neighbors and are
well balanced along some axis. In our approach, we define mono-
tonicity and symmetry as our measures of structure for glyphs.
Therefore user can find monotonic structure, symmetric structure,
or a combination of the two in the data.

Let’s take monotonicity+symmetry for example. In a perfectly
structured glyph:

• Neighboring rays have similar lengths.

• The lengths of rays are ordered in a monotonically increasing
or decreasing manner on both sides of an axis.

• Rays of similar lengths are positioned symmetrically along
either a horizontal or vertical axis.

The perfectly structured star glyph is thus a teardrop shape. With
such shapes in glyphs, the user will find it easier to identify relative
value differences between dimensions, and can better discern rays
and the bounding polylines. For instance, the data points shown

in Figure 5 present very different shapes with different dimension
order. The original order in Fig.5-(a) makes them look irregular
and display a concave shape, while the dimension order in Fig.5-
(b) makes them more symmetric and easy to interpret.

Figure 5: The two glyphs in (a) represent the same data points as
(b), with a different dimension order.

5.2 Clutter Measure in Star Glyphs

5.2.1 Defining and Computing Clutter

To reduce the clutter for the whole display, we seek to reorder the
dimensions to minimize the total occurrence of unstructured rays
in glyphs. Therefore, we define clutter as the total number of non-
monotonic and non-symmetric occurrences. We believe that with
more rays in data points displaying a monotonic and symmetric
shape, the structure in the visualization will be easier to perceive.

In order to calculate clutter in one display, we test every glyph
for its monotonicity and symmetry. Suppose the user chooses both
monotonicity and symmetry as the structure measure, and specifies
the first half of the dimensions being monotonically increasing and
the second half of the dimensions being monotonically decreasing.
The user can then choose a threshold t1 for checking monotinicity,
and a threshold t2 for checking symmetry. t1 and t2 are measures
for normalized numbers and thus can take any number from 0 to 1.
Suppose a point has normalized values on two neighboring dimen-
sions (dimensionn−1 and dimension0 are not considered neighbors),
pi and pi+1. If the two values don’t violate the user’s specification
for monotonicity, nothing happens. However, if the two values vi-
olate the user’s specification for monotonicity, we will check their
difference and decide if they clutter the view or not. For instance, if
pi+1 is less than pi while dimensioni and dimensioni+1 are among
the first half of the dimensions, it is a violation of the monotonicity
rule. We will see if pi − pi+1 is less than threshold t1 or not. If
so, we consider this non-monotonicity occurrence as tolerable, and
still, nothing happens. If not, we will add this occurrence to our
measure count of unstructuredness. Similarly, for two dimensions
that are symmetrically positioned along the horizontal axis, if their
difference is within threshold t2, they are considered symmetric to
each other. Otherwise another increment is added to the total oc-
currence of unstructuredness.

5.2.2 The Optimal Dimension Order

The calculation for a single glyph involves going through n−1 pairs
of neighboring dimensions to check for monotonicity and n/2 pairs
of dimensions symmetric along the axis. Therefore, for a dataset
with m data points, the calculation takes O(n ∗m). With the ex-
haustive search for best ordering, the computational complexity for
dimensional reordering in star glyphs is O(n∗m∗n!).

5.3 Example

For each ordering we can count the unstructuredness occurrences
to find the order that minimizes this measure. Figure 6 displays the
Coal Disaster dataset before and after clutter reduction. In Fig.6-
(a), many glyphs are displayed in a concave manner, and it’s hard
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Figure 6: Star glyph visualizations of Coal Disaster dataset. (a) represents the data with original dimension order, and (b) shows the data after
clutter is reduced. The shapes on (b) should mostly appear simpler.

to tell the dimensions from bounding polylines. This situation is
improved in Fig.6-(b) with clutter-based dimension reordering.

6 DIMENSIONAL STACKING

6.1 Clutter Analysis in Dimensional Stacking

The dimensional stacking technique is a recursive mapping method
developed by LeBlanc et al. [13]. Each dimension of the dataset
is first discretized into a number of bins. Then two dimensions
are defined as the horizontal and vertical axis, creating a grid on
the display. Within each box of this grid this process is applied
again with the next two dimensions. This process continues until
all dimensions are assigned. Each data point maps to a single bin
based on its values in each dimension.

Figure 7-(a) illustrates the Iris dataset with original dimension
order, i.e., dimensions in the order: sepal length, sepal width, petal
length and petal width, represented in this display as “outer hor-
izontal”, “outer vertical”, “inner horizontal” and “inner vertical”
respectively. Each of the four dimensions is divided into five bins
(ranges of values).

In this technique, the dimension order determines the orienta-
tion of axes and the number of cells within a grid. The inner-most
dimensions are named the fastest dimensions because along these
dimensions two small bins immediately next to each other represent
two different ranges of the dimensions. On the contrary, the outer-
most dimensions have the slowest value changing speed, meaning
many neighboring bins on these dimensions are within the same
value range. Therefore, in dimensional stacking, the order of di-
mensions has a huge impact on the visual display.

For dimensional stacking, the bins within which data points fall
are shown as filled squares. These bins naturally form groups in
the display. We hypothesize that a user will consider a dimen-
sional stacking visualization as highly structured if it displays these
squares mostly in groups. Compared to a display with mainly ran-
domly scattered filled bins, those that contain a small number of
groups appear to have more structure and thus can be better inter-
preted. The data points within a group share similar attributes in
many aspects. Thus this view will help the user to search for group-
ings in the dataset as well as to detect subtle variances within each
group of data points. The other data points that are considered out-

liers may also be readily perceived if most data falls within a small
number of groups.

6.2 Clutter Measure in Dimensional Stacking

6.2.1 Defining and Computing Clutter

We define the clutter measure as the proportion of occupied bins ag-
gregated with each other versus small isolated “islands”, namely the
filled bins without any neighbors around them. A measure of clutter

might then be
number o f isolated f illed bins
number o f total occupied bins

. The dimension order that

minimizes this number will then be considered the best order. The
user can define how large a cluster should be for its member bins
to be considered “clustered” or “isolated”. Besides that, we need to
also define which bins are considered neighbors. The choices are 4-
adjacent bins and 8-adjacent bins. 4-adjacency and 8-adjacency are
terms from image science, which help to define neighbors of pixels.
Since we are dealing with bins in grids that are quite similar to pix-
els in images, we employ the concept here. Two bins are 4-adjacent
if they lie next to each other horizontally or vertically, while they
are 8-adjacent if they lie next to one another horizontally, verti-
cally, or diagonally. With 4-adjacency being used, the adjacent bins
would share the same data range on all but one dimension, while
the 8-adjacent bins may fall into different data ranges on at most
two dimensions.

Given a dimension order, our approach will search for all filled
bins that are connected to neighbors and calculate clutter according
to the above clutter measure. The dimension order that minimizes
this number is considered the best ordering.

6.2.2 The Optimal Dimension Order

This algorithm is similar to that used with high-cardinality dimen-
sions in scatterplot matrices. However we are comparing the po-
sition of bins instead of plots. The computational complexity will
be O(m2) for one dimension order. The optimal search would thus

take O(m2 ∗n!).

6.3 Example

An example of clutter reduction in dimensional stacking is given in
Figure 7. We use 8-adjacent neighbors in our calculation. Fig.7-(a),
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Figure 7: Dimensional stacking visualization for Iris dataset. (a) represents the data with original dataset, and (b) shows the data with clutter
reduced.

Table 1: Table of computation times using optimal ordering algorithm
Visualization Algorithm Complexity Dataset Data Number Dimensionality Time

Parallel Coordinates O(n∗n!) AAUP-Part 1161 9 3 sec.
Cereal-Part 77 10 23 sec.

Voy-Part 744 11 4:02 min.

Scatterplot Matrices O(n2 ∗n!) Voy-Part 744 11(6 high-card dimensions) 5 sec.
AAUP-Part 1161 9 3:13 min.

Star Glyphs O(m∗n∗n!) Cars 392 7 18 sec.

Dimensional Stacking O(m2 ∗n!) Coal Disaster 191 5 10 sec.
Detroit 13 7 5 sec.

denoting the original data order, is composed of many “islands”,
namely the filled bins without any occupied neighbors. In Fig.7-
(b), the display has the optimal ordering: petal length, petal width,
sepal length, sepal width. We can discover that there are fewer
“islands”, and the filled bins are more concentrated. This helps
us to see groups better than in the original order. In addition, the
bins are distributed closely along the diagonal, which implies a tight
correlation between the first two dimensions: petal length and petal
width.

7 ANALYSIS OF REORDERING ALGORITHMS

As stated previously, the clutter measuring algorithms for the four
visualization techniques take different amount of time to complete.
Let m denote the data size, and n denote the dimensionality. The
computational complexity of measuring clutter in the four tech-
niques is presented in Table 1.

Exhaustive search would guarantee the best dimension order that
minimizes the total clutter in the display. However, in [2], Ankerst
et al. proved that an optimal search for best dimension order is
an NP-complete problem, equivalent to the Brute-Force solution to
Traveling Salesman Problem. Therefore, we can do the optimal
search with only low dimensionality datasets. To get a quantita-
tive understanding of this issue, we performed a few experiments
for different visualizations, and the results obtained are presented
in Table 1. We realized that even in a low dimensional data space
- around 10 dimensions - the computational overhead could be sig-
nificant. If the dimension number exceeds that, we need to resort
to heuristic approaches. For example, random swapping, nearest-
neighbor and greedy algorithms have been implemented and tested.

The random swapping algorithm starts with an initial configu-
ration and randomly chooses two dimensions to switch their posi-
tions. If the new arrangement results in less clutter, then this ar-
rangement is kept and the old one is rejected; otherwise the old ar-
rangement is left intact and another pair of dimensions are swapped.
Keep doing this until no better result is generated for a certain num-
ber of swaps. This algorithm can be applied to all the visualization
techniques.

The nearest-neighbor algorithm starts with an initial dimension,
finds the nearest neighbor of it, and adds the new dimension into the
tour. Then, it sets the new dimension to be the current dimension
for searching neighbors. Continue until all the dimensions have
been added into the tour. The greedy algorithm [4] keeps adding
the nearest possible pairs of dimensions, until all the dimensions
are in the tour.

The nearest-neighbor and greedy algorithms are good for parallel
coordinates and scatterplot matrices displays. In those displays,
there is some overall relationship between dimensions that can be
calculated, such as the number of outliers between dimensions and
correlation between dimensions. However, in the star glyph and
dimensional stacking visualizations, we calculate the clutter of a
display under certain dimension arrangements, instead of defining
relationship between each two dimensions. Thus these algorithms
are not very amenable to the latter two techniques.

With these heuristic algorithms, we perform dimension reorder-
ing for datasets with much higher dimensions with relatively good
results. Experimental results are presented in Table 2.
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Table 2: Table of computation times using heuristic algorithms
Visualization Dataset Data Number Dimensionality Algorithm Time

Parallel Coordinates Census-Income 200 42 Nearest-Neighbor Algorithm 2 sec.
Greedy Algorithm 3 sec.
Random Swapping 2 sec.

AAUP 1161 14 Nearest-Neighbor Algorithm 7 sec.
Greedy Algorithm 9 sec.
Random Swapping 6 sec.

Scatterplot Matrices Census-Income 200 42 Nearest-Neighbor Algorithm 2 sec.
Greedy Algorithm 3 sec.
Random Swapping 2 sec.

AAUP 1161 14 Nearest-Neighbor Algorithm 8 sec.
Greedy Algorithm 8 sec.
Random Swapping 7 sec.

Star Glyphs Census-Income 200 42 Random Swapping 2 sec.
AAUP 1161 14 Random Swapping 7 sec.

Dimensional Stacking Those datasets are too big for dimensional stacking visualization.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed the concept of visual clutter
measurement and reduction using dimension reordering in multi-
dimensional visualization. We studied four rather distinct visual-
ization techniques for clutter reduction. For each of them, we ana-
lyzed its characteristics and then defined an appropriate measure of
visual clutter. In order to obtain the least clutter, we searched for a
dimension order that minimizes the clutter in the display.

This represents a first step into the field of automated clutter re-
duction in multi-dimensional visualization. There are many visual-
ization techniques that we haven’t experimented with yet, and cer-
tainly our clutter measures are not the only ones possible. Our hope
is to give users the ability to generate views of their data that will
enable them to discover structure that they will otherwise not find
in a view with the original or a random dimension order.

Future work will include the combination of clutter reduction
approaches with dimension reduction or hierarchical data visu-
alization to gauge the effectiveness of these techniques in high-
dimensional or high data volume datasets.
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