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ABSTRACT 
 
This research demonstrates how principles of self-organization 
and behavior simulation can be used to represent dynamic data 
evolutions by extending the concept of information flocking, 
originally introduced by Proctor & Winter [1], to time-varying 
datasets. A rule-based behavior system continuously controls and 
updates the dynamic actions of individual, three-dimensional 
elements that represent the changing data values of reoccurring 
data objects. As a result, different distinguishable motion types 
emerge that are driven by local interactions between the spatial 
elements as well as the evolution of time-varying data values. 
Notably, this representation technique focuses on the 
representation of dynamic data alteration characteristics, or how 
reoccurring data objects change over time, instead of depicting the 
exact data values themselves. In addition, it demonstrates the 
potential of motion as a useful information visualization cue.  

The original information flocking approach is extended to 
incorporate time-varying datasets, live database querying, 
continuous data streaming, real-time data similarity evaluation, 
automatic shape generation and more stable flocking algorithms. 
Different experiments prove that information flocking is capable 
of representing short-term events as well as long-term temporal 
data evolutions of both individual and groups of time-dependent 
data objects. An historical stock market quote price dataset is used 
to demonstrate the algorithms and principles of time-varying 
information flocking.  

 
CR Categories: H.5 [Information Systems]: Information 
Interfaces And Presentation (I.7);  I.2.11 [Artificial Intelligence] 
Distributed Artificial Intelligence 

 
Keywords: time-varying information visualization, artificial life, 
3D information visualization, motion, boids.   
 
1. INTRODUCTION 
 
Emergence is the process of deriving some new and coherent 
structures, patterns and properties in a complex system. Emergent 
phenomena are typically generated by a specific mechanism of 
simultaneous interactions between all the elements of a certain 
system over time that sense a situational awareness of their 
environment. Accordingly, the research presented in this paper is 
based upon the assumption that typical information visualization 
techniques such as spatial clustering could be driven by data-
dependent interaction rules. These are valid within the 
visualization space itself, for instance by determining dynamic 
behaviors of visual elements depending on their relative spatial 
position and the data values of the elements in their environment. 
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Information visualizations that are based upon such behavior rules 
could possibly lead to novel techniques that would perform in 
ways that exceed what they have been explicitly programmed to 
do. Such emergent data representations would act in self-
organizing ways, displaying meaningful data patterns both 
locally, by interactions between nearby entities, and globally, by 
generating recognizable emergent behaviors of groups of entities. 

Consequently, such emergent principles could be integrated 
within time-varying (also called dynamic, time-dependent, time-
variant, time-based or temporal) information visualizations, as 
they are capable of representing both instant events as well as 
continuing data evolutions. Such visualizations have the potential 
to be used for exploratory tasks, in which users typically have 
little knowledge about the temporal characteristics or in which 
experts wish to have a drastically different look at the dataset. 

This paper is mainly based on the mathematical flocking 
simulation of birds or fish, normally used for computer graphics 
real-world simulation effects, such as in popular movies [2]. 
These swarming movements are generated by behavior rules 
introduced by Reynolds [3], who successfully modeled the 
movements of so-called boids (or bird-objects) within a flock. A 
possible functional explanation for this social flocking behavior 
describes how animals at the edge of the herd are more likely to 
be selected by predators [4]. Accordingly, boids would ‘selfishly’ 
attempt to move as close to the center of the herd as possible, and 
thus, in visualization terminology, cluster. Such boids act as 
agents: they are situated, viewing the world from their own 
perspective rather than from a global one, and their actions are 
determined by both internal states as well as external influences.  

Flocking behavior has already been explored for information 
display by Proctor and Winter [1], who showed how the clustering 
movements of swarming fish are able to represent the static 
relationships of interest of employees, based upon a simple, static 
similarity weight matrix. This paper extends this information 
flocking concept with several novel features, such as time-varying 
data simulation, live database querying, continuous data 
streaming, local data caching, real-time data similarity evaluation, 
data-dependent behavior rules, automatic shape generation and 
more stable flocking algorithms. As a result, this visualization 
technique is able to generate dynamic visual patterns that are 
based upon long-term as well as short-term temporal similarities 
within time-varying datasets. In addition to the spatial clustering 
mechanisms, it introduces a set of global and local motion 
typologies as novel visual cues for dynamic data representation. 

 
2. BACKGROUND  
 
2.1. Time-Varying Data 
 
Time-varying datasets contain collections of data objects that are 
altered in time, due to continuously executed, time-dependent 
data updates. A data update can be imagined as the sequential 
change of a data value (e.g. stock market price) to a successive 
timeframe (e.g. daily) of a specific data object (e.g. a company). 
A data update can be classified according to its specific time-
dependent behavior, e.g. continuous or discontinuous, by its October 10-12, Austin, Texas, USA 

0-7803-8779-1/04/$20.00 ©2004 IEEE 

IEEE Symposium on Information Visualization 2004 

97



frequency of change, e.g. regularly or unpredictably event-based, 
or by its relative data value change, e.g. noisily or significantly.  

Time-varying information visualization differs considerably 
from traditional static data representations of fixed datasets. 
Often, its users are not concerned with exact data values currently 
valid (e.g. stock market quote prices), but rather are interested in 
how data values evolve in time (e.g. a company performing 
significantly better than the day before, regardless of the exact 
stock market quote price) or in the context of the whole dataset 
(e.g. a company quote performing better than all others on a single 
day). Only a few approaches exist that are capable of representing 
such time-varying characteristics alterations over time, and mostly 
are limited to a sequence of static data representations. 

 
2.2. Time-Varying Data Visualization 
 
The following list compares alternative, commonly used methods 
for visualizing time-varying datasets.  

 
Static State Replacement. These techniques represent data 

value updates by instantly replacing a static world with another 
version, mostly because the visualization generation requires 
considerable calculation efforts. The disadvantage of this 
approach is that the continuous sequences can be ineffectively 
perceived as discrete steps [5]. 

 
Time-Series Plots. These approaches typically employ time-

series plotting, connecting sets of static states that are mapped in 
space and time with simple curves, stacks or timelines, such as 
stock market chart line diagrams, web usage bar charts, or line 
and river metaphors [6].  

Static State Morphing. Temporal data can be filtered by 
directly changing the selected time period, a method also called 
dynamic queries [7]. Static state morphing techniques interpolate 
the visualization between different fixed states that accurately 
represent the data values within discrete time intervals. Notably, it 
is the object’s motion and not the nature of the motions that 
carries the informational values. These techniques also differ from 
information flocking because they require some pre-computation 
of the static states, and thus are unable to visualize real-time data.  

Control Applications are like online aggregations and can be 
classified as anytime algorithms that can produce a meaningful 
approximate result at any time during their execution. Instead of 
requiring a dedicated amount of time to build up the scene, a 
control project gradually streams representative data objects to the 
visualization system [8]. 

Equilibrium Attainment. Force-directed diagrams and self-
organizing maps show many conceptual similarities with 
information flocking, as they are internally controlled by local 
interactions and only reach a state of equilibrium after a specific 
adaptation time [9]. However, most force-directed methods 
visualize static datasets and require pre-computed data similarity 
matrices to determine the spring strengths between pairs of points. 
Notably, force-directed visualizations only represent 
informational values by individual distance differences, and do 
not generate sets of recognizable behaviors as the motion 
characteristics carry no specific meaning.  
 
2.3. Cognitive Science  

 
Motion is generated through a process called animation, in which 
form and structure evolve through a certain development over 

time, thereby conveying the feeling of kinetics or dynamics. Well-
designed motion metaphors can be aesthetically appealing, are 
able to attract attention, maintain motivation and facilitate 
comprehension, learning, memory, and communication. Mostly, 
computer-generated motion is used to demonstrate change 
through a process of morphing, or to grasp the awareness of 
participants by displaying unexpected events.  

Normally, animated objects follow predefined paths that are 
based on various mathematical equations or constraints. However, 
motion can also be controlled by so-called behavior functions, 
which determine the dynamic behavior of objects based on the 
status of other objects in the environment rather than interpolating 
spatial positions between fixed control points. Such behaviors 
functions generally consist of so-called local rules. These rules 
are local in two senses: each individual member contains its own 
set of rules and the future state of a member only depends on its 
neighbors. The goal of this approach is to generate interpretatively 
rich and unexpected behaviors that seem to be intentional, by 
provoking the perception of causality, animacy and initiative.  

Michotte [10] suggests that causal relationships are perceived 
directly when certain simple animation techniques are used, such 
as launching, entraining and triggering. This phenomenon proves 
the potential of the rich expressive vocabulary of motion for 
information visualization purposes [11]. Lethbridge and Ware 
[12] used simple behavior functions based on distance, velocity 
and direction to model complicated relationships such as pulling, 
pushing, chasing, escaping, repulsion, collision and anticipation. 
Such behavioral animation techniques employ local rules to 
determine the dynamic motion of actors in a rule-based system. 
Basically, a database is made up of a set of cause-and-effect rules 
which the animated objects, usually called actors, must follow. To 
a certain extent, an autonomous character determines its own 
actions, as it has some ability to ‘improvise’. Similar motion 
typologies are perceived as grouped, a phenomenon also called 
temporal grouping, and relates to the appearance and locations of 
the elements, the proximity in time and similarity of motions [13]. 
Bartram and Ware [14] proved that motion typology has a strong 
and effective perceptual grouping effect for information display.  

Although initially the use of motion might seem to contradict 
mapping data on ‘fixed’ coordinates, it has great potential for 
novel visualization techniques that are independent of spatial 
positioning and are instead solely based on dynamic properties, 
for instance those created by emergent behavior generation 
algorithms. 

 
2.4. Motion-Based Data Visualization 
 
The 3-D Visual Data Mining system (3DVDM) generates three-
dimensional temporal data scatterplots that morph between two 
static states (Nagel and Granum, 2002). Motion is used to denote 
change from one time state to another, next to the use of point 
vibration as an informational cue, in terms of amplitude, 
frequency and phase in all three dimensions. Similarly to the 
information flocking approach, this method solves time-varying 
data evaluation and visualization performance issues through 
distributed computing and shared memory parallelism.  

The boid concept has already been employed to simulate a 
realistic mathematical model of dynamic formations in order to 
characterize swarms with respect to implementation parameters of 
wireless, ad-hoc network communications systems [15].  This 
research demonstrated how the boid technique can be used to 
analyze the network communication link establishment 
performance by characterizing different sorts of swarm behavior, 
such as ordered or chaotic, tight or loose, and global or regional. 
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The emergent behavior of flocks can also be used as an effective 
search strategy for performing an exploratory geographical 
analysis, much like detecting visual clusters in large collections of 
points [16]. It is an example of a new kind of social intelligence 
model, called Particle-Swarm Optimization (PSO), that, like other 
evolutionary computation algorithms, can be applied to problem 
solving, learning and optimization problems in the fields of 
system design, pattern recognition, biological system modeling, 
signal processing, decision making, simulation and identification, 
and so on [17]. In the field of scientific visualization, swarming 
agents have been applied in three-dimensional virtual reality 
environments to simultaneously represent and solve specific 
constraints of computational fluid dynamics problems [18]. 

 
3. IMPLEMENTATION  

 
Each boid represents a stock market company. The data object of 
a boid is subjected to a continuous stream of updated data values 
(i.e. new stock market prices). The goal of the information 
flocking metaphor is to visualize the characteristics of this update 
process through an automatic interpretation process. 
 
3.1. Infoticle 

 
The information flocking technique was implemented on top of 
the so-called infoticle (information–particle) visualization engine 
[19]. The infoticle technique is a rule-based visualization tool that 
represents each reoccurring data object within a time-varying 
dataset with a single particle positioned in three-dimensional 
space. The system is capable of querying and streaming sequential 
subsets of a large data collection from a remote database to the 
visualization engine, and can evaluate the incoming data value 
alterations in real time. These dynamic data changes then trigger 
appropriate behavior rules, which in turn determine the spatial 
behaviors of the corresponding infoticles. 

In practice, each boid is represented by a colored, curved line 
with a gradually decreasing transparency, spatially connecting the 
three-dimensional positions it has passed through. The boid color 
depicts positive or negative data value changes. At a specific 
predefined rhythm, each boid stores its current position and data 
values within a history list, thus defining the control points and 
color coding for its line representation. Technically, these traces 
are generated by the so-called Catmull-Rom spline algorithm, 
which is capable of mathematically representing curves that 
connect a series of points at irregular intervals. This 
representation technique was chosen because it generates smooth 
and stable curves that pass through all defining control points, are 
continuous in the tangent direction and have second-degree 
curvatures that change linearly over the length.  

Notably, the visualization can be shown on immersive virtual 
reality installations, which require special considerations 
regarding spatial orientation, navigation and user interaction. 
However, this paper will not deal with these specific issues, as the 
main contributions can be considered independently from the 
presentation medium. 
 
3.2. Simulation 

 
The system is capable of retrieving, processing and visualizing a 
continuous stream of data values in real time. The fact of whether 
this data flow is generated by a separate, remote process, for 
instance by a live stock market feed, or whether it is retrieved 
from a database with historical data values plays no significant 
role. 

 
Figure 1. Database and application timeframe update process. 

 
A time-varying dataset contains a given set of reoccurring data 
objects in which the data values change over time. Each data entry 
has a specific timestamp, which enables the system to query and 
order subsets of data according to delimiting database and 
application timeframes, as illustrated in Figure 1. 
 

Database Timeframe determines the duration, measured in 
physical time units, within which the data that is streamed from 
the database to the visualization system needs to be positioned. At 
every application timeframe step, the database timeframe is 
sequentially shifted and new data is collected. Differences in 
database timeframe durations, or dataset time granularities, result 
in fundamentally different visual patterns. The database 
timeframe duration is also directly related to the data quantity that 
has to be streamed from the database to the visualization, thereby 
directly affecting the application’s performance.  

Application Timeframe denotes the rhythm at which the 
application retrieves the next batch of data objects for the 
following database timeframe. In practice, it describes the number 
of frames after which the visualization system retrieves the new 
data objects of the next database timeframe. Each subsequent 
application timeframe corresponds to a unique database 
timeframe, and both are continuously updated in parallel. 
Differences in simulation timeframe durations result in dissimilar 
boid patterns, as these receive either more or less time to adapt to 
the newly created situation. For instance, a too short application 
timeframe would prevent the boids from clustering and leave 
them in a constantly chaotic state, whereas a too long application 
timeframes would cause boids to act slowly and less information-
generated. 

The real-time data similarity evaluation requires the handling of 
multiple occurrences of data objects within a single database 
timeframe. As each boid can represent only a single data value for 
each application timeframe, averaged data values need to be 
calculated on the fly whenever the database timeframe is longer 
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than the actual data granularity of the stored dataset and multiple 
equal data object entries exist (see Fig.1). 

3.3. Database 
 

The used dataset accumulates the daily opening, closing, high and 
low prices and the corresponding trade volumes of historical stock 
market quotes within one year, totaling about (±500 companies x 
±200 working days) 12.631 data entries. It was acquired from a 
public website that collects the historical stock market prices of 
the 500 Standard & Poor's Index Directory [20], which represents 
a sample of 500 leading companies in the most important 
industries of the U.S. economy. 

The boid flocking method uses a database instead of a static 
data storage for its versatile and efficient data querying and 
retrieval features. Accordingly, the database timeframe can be 
altered by way of adapting the database query if users want to 
analyze the data in different time granularities (e.g. analyzing 
weekly averaged instead of daily stock market quotes). Databases 
can be queried for data subsets on the fly, so that different data 
attributes of the same dataset can be analyzed in various levels of 
detail. In addition, the calculation-intensive effort of browsing, 
searching, ordering and organizing large quantities of data is 
transferred to well-established, optimized database algorithms. In 
addition, a database can be easily changed, extended or updated, 
even in real time, by parallel, external processes running 
independently from the visualization application. 

Querying, communicating and caching datasets are typical 
calculation intensive processes. However, the boid flocking 
method is highly dependent on the correct interpretation of 
continuous motion typologies, which thus should never be 
visually interrupted.  Therefore, the boid application is controlled 
by two different processes that run in parallel, preferably on a 
dual-processor machine. The data process is responsible for 
querying and caching the data from the remote database, while a 
separate process renders the scene, calculates the data 
dependencies and according boid positions. To further optimize 
the data handling procedures, the data caching process already 
collects data subsets of the next database timeframe. 

 
3.4. Behavior Rules 

 
The direction and speed of each boid A with position Ap

r , is 
dependent on all the boids X with position Xp

r  in its 
neighborhood. Following flocking rules apply, which are executed 
for each single boid and at each single frame.   

 
Collision Avoidance. Pull away before crashing with other 

boids nearby. If the distance between the boids is within the 
collision avoidance range CAd , calculate a directional vector 
pointing away, of which the strength is inversely proportional to 
the distance between the boids. 
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Velocity Matching. Attempt to move with about the same 
speed as the neighbors in the flock. If the distance between the 
boids is smaller than the velocity matching threshold, boid A 
should attempt to take over the direction of boid X. 
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Flock Centering. Attempt to move toward the center of the 
flock as the boid perceives it. If the distance between Xp

r and 
Ap
r is smaller than the flock centering limit, boid X should try to 

direct itself towards boid A.  
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These three traditional flocking principles are solely based upon 
the relative spatial positions of the pairs of boids, and are 
extended with two separate data-dependent clustering rules. These 
rules rely on the relative change qchange in the data values from the 
previous database timeframe (qprevious) to the current one (qcurrent). 
Only one of both rules is valid for each pair of boids A and X, 
depending on whether the similarity between the two data 
alterations is below a specific threshold tthreshold. In addition, a 
weight factor wDS between boid A and X is introduced, that is 
proportional to their data alteration similarity and will influence 
the strength of the resulting attraction or repulsion force.  
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Data Similarity. Attempt to stay close to those boids that have 
experienced a similar data value evolution during the current 
database timeframe. The data alteration similarity, in this case the 
relative change of stock market prices, is determined by 
calculating the difference between the data value evolutions of the 
boids. The strength of the attracting force is proportional to the 
distance between the boids and the similarity between the two 
data value evolutions.  
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Data Dissimilarity. Attempt to stay away from boids with 
dissimilar data values in the current database timeframe. This rule 
is similar to the previous data similarity influence, except that the 
repulsion force and the distance between the boids are inversely 
proportional.  
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1,,,,0 << DDDSFCVMCA wwwww  are weights applied to Collision 
Avoidance, Velocity Matching, Flock Centering, Data Similarity 
and Data Dissimilarity behaviors respectively. 

DDDSFCVMCAA vvvvvv rrrrrr ,,,,,  denote the accumulated velocity vectors. 
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It was chosen to include two separate data-dependent behavior 
rules instead of one, to generate a more controllable flocking 
behavior that can be changed in several terms of data similarity 
instead of a single repulsion/attraction factor. By also keeping the 
traditional behavior rules, the general flocking organization 
influences can still be stabilized or adapted. 
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Figure 2. Individual boids separating from the main flock. 

 
In general, the Flock Centering and Velocity Matching weighting 
factors are small, to avoid any fast directional movement of the 
whole flock as a whole, and to provide the data similarity rules 
enough freedom to invoke the clustering tendencies. 

The behavior of a flock never attains equilibrium, and expresses 
continuing characteristics but also unpredictable patterns [21]. 
Accordingly, it is necessary to stabilize this behavior as much as 
possible by fine-tuning both the different weighting factor values 
and the threshold distances. The exact numerical values of these 
variables are determined through a process of trial and error, as 
the application designer is mostly unable to foresee the exact 
outcomes of the simultaneously applied local interactions.   
 
3.5. Shape 

 
The formal language of enclosed figures like blobs, circles, bars, 
lines, crosses and arrows, suggests certain physical properties that 
cognitively provoke compelling conceptual interpretations. 
Furthermore, enclosed figures suggest the possibility of 
containing certain elements, thus effectively separating those 
elements from others. Accordingly, the information flocking 
method uses blob shapes to denote data similarity and to support 
the perception of spatial clusters. 

Three-dimensional lines are generally rendered with a constant 
thickness regardless of the distance from the viewer, so that the 
representation contains few effective depth perception cues and an 
accurate spatial overview is made difficult. By enclosing boids 
within shapes, the visual perception of global and directional 
trends is enhanced. In effect, a user is able to recognize the visual 
impact of a single three-dimensional shape more rapidly than 
navigating around spatial clusters of spatially separated boids. In 
addition, shapes reduce the amount of points to be observed, and 
shift the attention from individual movements to a more formal 
interpretation. These shapes also facilitate the detection of 
individual outlying boids that might have been overlooked 
otherwise: points that lay outside of cluster centers typically form 
bumps or significant bulges that are visually more predominant. 
In addition, the shape surface also reproduces the colors of the 
boids it conceals, generating highlighted zones of winning and 
losing stock market quotes on the outskirts of the flock. 

 
Figure 3. Boid shape generation and evolution. 

 
These shapes are generated by a specific surface mesh 

algorithm called marching cubes. This method is able to generate 
closed, three-dimensional surfaces that span a number of three-
dimensional points, in this case the collection of boids. The 
implementation is based upon the work of an improved marching 
cubes method called implicit surface polygonizer, which defines 
the cube divisions dynamically using algorithms instead of a look-
up table [22]. This mesh generation technique cannot be executed 
at each single frame because of computing performance 
limitations, and so is triggered at time intervals or by user action. 

 
4. RESULTS 

 
4.1. Dynamic patterns 

 
The current information flocking method is capable of clustering 
groups of boids that experience similar data alterations. Figure 2 
shows how sudden significant events are depicted by expulsed 
individual boids that leave the main flock. The dominant red color 
shows that the majority of the stock market was exposed to 
negatively changing stock market prices. Those companies that 
have a significantly different price change become separated into 
two directions: those winning (in white and on the right), and 
those losing (in red and on the left). The parallel directions of the 
lines denote a similar price change for that database timeframe. 
As MNST, RJR and LPX experience slightly different price 
changes in comparison with those in the sub-flocks on that day, 
their boids move in directions that are not perfectly in parallel. 

Figure 3 shows the shapes generated for a simulation timeframe 
of four days. It demonstrates how shapes can support the 
perception of the outskirts of the flock, and the estimation of the 
relative distances. Very significant price changes of individual 
companies result in the expulsion of the according boids. More 
subtle spatial self-organization occurs within the main flock: CMS 
becomes the head of the group at May 7, as its price remained 
almost constant and experienced a price fall well after that date.  
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Figure 4. Periphery flock view. 

 
Although the similar price evolving companies are at the back 

of the flock, their initial spatial situation makes it impossible to 
pass the main group immediately, due to the overwhelming 
collision avoidance forces. One can also perceive smaller bulges 
of the shape surface, denoting boids at the outer sides of the flock. 
Although humans almost automatically attempt to classify these 
formal inconsistencies, experience has shown it is not efficient to 
do so: often, bulges are generated through the random nature of 
the general flocking behavior instead of data-driven influences. 
Therefore, it is more effective to observe the dynamic behavior of 
individual or groups of boids, as the direction and speed generally 
do correspond accurately to direct data evolution similarities. 

In contrast with Figure 2, which showed short-term events of 
small subgroups, and Figure 3, which demonstrated how flocks 
are capable of reorganizing after a few application timeframes, 
Figure 4 and 5 illustrate long-term group behavior and clustering 
of the whole flock, here from May 14 until June 3. Both figures 
illustrate the exact same flock: Figure 4 analyzes the price 
performance of the boids at the outskirts of the flock, which have 
clearly experienced large and random price differences,  whereas 
Figure 5 focuses on the flock center, which is clustered closely 
together and represents equally, steadily changing data entities. 
Many other short-term dynamic behaviors occur that are difficult 
to illustrate in static images, such as implosions, explosions (as 
illustrated in Fig.6), and sudden global direction changes. Often 
these behaviors are caused by extreme chaotic or, on the contrary, 
very regular data value changes for the majority of the dataset. 
Figure 7 demonstrates how a relatively large subgroup of boids is 
dynamically generated around the data of May 13th, and becomes 
separated from the main flock because of a significantly similar 
change in stock market price around that date.  

In effect, all the boid figures demonstrate how information 
flocking boids use directional expulsion as a behavioral technique 
to correlate unique and outlying dynamic patterns within the time-
varying dataset. This method is valid both for individual as well 
as groups of boids, and is capable of clustering similar data 
entities in terms of short-term significant events in comparison 
with the whole dataset as well as long-term data value evolutions. 
Note that parallel (and not necessarily overlapping) stock price 
quote chart lines induce the boid clustering tendency. 

  

 
Figure 5. Flock center view. 

 
4.2. Static patterns 

 
It was expected that the formality of the boid shapes would 
correspond with the data update characteristics, so that, for 
instance, irregular forms would result out of chaotic, significant 
data alterations, while sphere-like objects would arise out of 
stable or slowly developing stock market quote prices. However, 
it was discovered that such interpretations could only be made by 
a continuous observation of the changing shapes, and not from the 
perception of separate static entities. Nevertheless, the boid 
shapes do enable a more efficient recognition of the flock’s 
overall constellation, individual expulsions and its spatial division 
between periphery and center.  

Another way of analyzing a ‘frozen’ flock collection, is to 
consider the directionality of the boids: at specific time intervals 
one can observe a clearly uniform directed movement, in contrast 
to sudden ‘implosions’ that often denote very chaotic price 
evolutions within the majority of the dataset. 

As all boids are represented by splines, users are able to 
perceive the past trajectory of the boids, and evaluate its curvature 
and directionality relative to the whole flock. In effect, the boid 
traces act as static, visual artifacts representing the historical 
motion typologies. In addition, information flocking can also be 
interpreted by considering both spatial clustering and boid 
directionality: boids that are in close proximity to one another and 
at the same time are moving in a parallel direction represent some 
data update similarity for the active database timeframe. 

 

 
Figure 6. Boid explosion and implosion behaviors. 
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Figure 6. Boid subgroup separation. 

 

5. EVALUATION 
 
5.1. Advancements 
 
The research presented in this paper has applied following 
extensions on the original information flocking method [1]. 

 
Time-Varying Dataset. The original paper mentioned the 

possibility of time-varying datasets, however did not describe any 
specific implementation results. In fact, one might note some 
discrepancy between the inherently dynamic nature of boids that 
continuously move and adapt (and in fact constantly reform 
spatial clusters), and the representation of inherent static data. In 
contrast, our implementation is able to adapt to rapid and even 
chaotic data update sequences in real time. 

Behavioral Clustering. Whereas the original research relied 
solely on the spatial clustering of similar data points, time-varying 
boids are able to demonstrate dynamic data-dependent motion 
behaviors on a global level, for instance representing calm 
(directional movement) or chaotic (implosive, erratic movement) 
stock market periods or long-term price quote change evolutions 
(periphery orbiting versus center flocking). In effect, both the boid 
motion typology and the spatial position relative to the flock and 
its neighbors carry informational meaning. 

Real-Time Evaluation. The infoticle method does not require 
pre-calculated similarity matrices denoting the relationships 
between all the individual data entries, but determines the data 
similarity during execution time. Consequently, this method is 
capable of representing real-time datasets and inherently different 
dataset typologies simultaneously. 

Algorithmic Alterations. In contrast to the first approach, the 
current boid approach has not removed the original Flock 
Centering rule out of the flocking algorithms because it enables a 
more effective global and time-varying coherence of the general 
flock behavior. This algorithmic difference between the two 
methods is most probably caused by solving the continuous 
directional and spatial ‘stress’ imposed by the repetitive data 
update process, which evidently requires more rule-based 
dynamic stability and thus more organizing power over the whole 
behavior generation. 

Dissimilarity Repulsion. Two, instead of one, extra factors 
extend the original boid algorithm by also considering data 
dissimilarity as a separate, individual influence. Alternatively, 
dissimilarity could not be evaluated at all, or be merged into a 
single (negative similarity) data influence vector. However, 
adding this influence separately enforces the clustering and 
especially the de-clustering tendency of the boids considerably, a 
factor which is important when the boids have to regroup and 
show an interpretable constellation within the time allocated by 
the application timeframe. 

 
5.2. Initialization 
 
The spatial initialization state of the boid collection does not play 
a significant role, as the quantity and continuity of local boid 
interactions will randomize the initial setting during the first 
application timeframes. However, a visualization that initiates 
from different points on the database timeline will inevitably 
result in different long-term flocking behaviors, as the boids have 
not been exposed to the same time-varying ‘experience’ and thus 
will be positioned differently within the flock.  However, 
significant short-term events will be represented correctly, as 
these depend much less on past data evolutions.  

Flocking behavior has the natural tendency to move to specific, 
unexpected directions, and therefore has the inherit risk of 
disappearing by floating off the screen space. Although the 
current prototype minimizes this risk by selecting a well-
considered flock centering weighting factor, appropriate 
navigation and interaction means are still required to follow and 
analyze the flock from different distances and directions.  
 
5.3. Equilibrium Attainment 

 
The behavior of a flock never attains equilibrium [21]. The 
information flocking technique uses a dynamic and evolutionary 
process to produce a visual representation that is constantly 
subjected to a state of flux. Distances between boids with equal 
directions or behaviors denote a degree of data similarity. Spatial 
direction or behavior inequality means that those boids are subject 
to different data update histories. However, these proximity 
measures need to be considered in relation to the phenomenon of 
the true representation equilibrium. Immediately after each data 
update, the complete boid collection is transformed into a state of 
extreme instability, as all boids with changed data values are 
influenced by new internal spatial behavior specifications. 
Consequently, a specific equilibrium adaptation time tequilibrium is 
required to reach a true, stable representation. A state of 
equilibrium is attained when all boids have reached their 
destination within a stabilized flock, and subsequently have 
acquired a constant dynamic behavior pattern. In theory, such a 
true representation can be analyzed in a static state without the 
risk of misinterpretation. In practice however, the application 
timeframe is mostly shorter than the required equilibrium 
adaptation time. This subjects the resulting representation with a 
continuous level of stress, which causes fast and efficient dynamic 
adaptations. In practice, the required equilibrium time span 
tadaptation is directly related to a single boid i which is positioned at 
the greatest distance di from its mates with similar data values, 
and is traveling with velocity vi to its final mates destination Ti. 
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This equilibrium adaptation time is effectively utilized to 
visualize similarity in long-term data history evolutions. Boids 
that represent similar data values over time, and are consequently 
already close together, receive relatively more equilibrium 
adaptation time to cluster closely in a equilibrium than those that 
were subjected to a considerable amount of different data values 
within this timeframe, and are further away as a result of this. As 
shown in Figures 4 and 5, the continuous stress and instability 
influences that are continuously imposed on the boid collection 
generate an effective long-term separation within the flock 
between stable and significantly changing time-varying data 
objects.  

 
5.4. Time  

 
One should note that this method does not offer an immediate 
representation of a dataset at a certain point in time, but rather 
requires a specific time simulation to calculate the time-varying 
data similarities and evolutions out of which the spatial flock 
constellation arises. Whereas sudden individual boid expulsions 
are generally easily spotted and denote exceptional changes in the 
stock quotes of the corresponding companies, collective behaviors 
typically require slightly longer observation time spans to be 
effectively perceived. In effect, information flocking pattern 
recognition is based upon an uninterrupted comparison of altering 
animated clusters and shapes generated by groups of boids, 
instead of analyzing the spatial composition of a three-
dimensional world. However, a static boid representation can still 
be analyzed on the level of spatial clustering, by comparing both 
the directions and proximities of nearby boids. However, the boid 
behaviors offer little cues about the reasons behind the data 
dependencies or evolutions, requiring the use of alternative tools 
or information sources to analyze the specific data patterns in 
more detail.  

 
6. CONCLUSION 

 
This paper has described the algorithms and principles that drive 
the information flocking method, and how they can be applied to 
a real-world and almost chaotic dataset. It has demonstrated a 
working prototype which is capable of handling 500 boids in real-
time, generating a dynamic information visualization that depicts 
the evolutionary data similarities within a time-varying data 
collection over different time periods. It has shown how the 
original information flocking principles of spatial clustering are 
extended with dynamically generated motion typologies to 
represent similarities in time-varying datasets, or how data 
evolves over time, both for individual and groups of data objects. 
Further research should prove whether data-driven boids are 
capable of also qualitatively representing the so-called delta or 
change in time-varying datasets.  

Information flocking could be made more user-friendly by 
depicting the degree of data dependencies within a flock of user-
selected boids by color or by automatically labeling thematic 
subgroups within the flock during the visualization simulation 
itself. Furthermore, users could be offered menus or tools to 
enable the adaptation of boid dependencies and timeframe 
durations during runtime, making the visualization more 
interactive and explorative. We are currently evaluating the 
information flocking technique with other, less chaotic, time-
varying datasets, such as lexicalized concepts from language-
based human communications during creative design meetings.  
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