
Non-Euclidean Spring Embedders∗

Stephen G. Kobourov† Kevin Wampler‡

University of Arizona

Abstract

We present a method by which force-directed algorithms for
graph layouts can be generalized to calculate the layout of
a graph in an arbitrary Riemannian geometry. The method
relies on extending the Euclidean notions of distance, angle,
and force-interactions to smooth non-Euclidean geometries
via projections to and from appropriately chosen tangent
spaces. In particular, we formally describe the calculations
needed to extend such algorithms to hyperbolic and spherical
geometries.

CR Categories: G.2.2 [Discrete Mathematics]:
Graph Theory—Graph Algorithms; H.5.0 [Information Sys-
tems]: Information Interfaces and Presentation—General
I.3.6 [Computing Methodologies]: Computer Graphics—
Methodology and Techniques

Keywords: force-directed algorithms, spring embedders,
non-Euclidean geometry, hyperbolic space, spherical space,
graph drawing, information visualization

1 Introduction

Some of the most flexible algorithms for calculating layouts
of simple undirected graphs belong to a class known as force-
directed algorithms. Also known as spring embedders, such
algorithms calculate the layout of a graph using only infor-
mation contained within the structure of the graph itself,
rather than relying on domain-specific knowledge. Graphs
drawn with these algorithms tend to be aesthetically pleas-
ing, exhibit symmetries, and tend to produce crossing-free
layouts for planar graphs.

However, existing force-directed algorithms are restricted
to calculating a graph layout in Euclidean geometry, typi-
cally R

2, R
3, and more recently R

n for larger values of n.
There are, however, cases where Euclidean geometry may
not be the best option: certain graphs may be known to
have a structure which would be best realized in a differ-
ent geometry, such as on the surface of a sphere or on a
torus. Furthermore, it has also been noted that certain non-
Euclidean geometries, specifically hyperbolic geometry, have
properties which are particularly well suited to the layout
and visualization of large classes of graphs [10, 11].

We present a method by which a force-directed algorithm
can be generalized so that it can compute a graph layout
in any of a large class of geometries (known as Riemannian
geometries), so long as the mathematics describing how the
geometries behave are well described. Because of the partic-

∗This work is partially supported by the NSF under grant
ACR-0222920.

†Email: kobourov@cs.arizona.edu
‡Email: wamplerk@cs.arizona.edu

ular usefulness of hyperbolic geometry and spherical geom-
etry, with respect to graph drawing, we also present these
mathematical properties for the case of H

2, two dimensional
hyperbolic space and S

2, spherical space. Our method relies
on extending the Euclidean notions of distances and angles
to Riemannian geometries via projections to and from ap-
propriately chosen tangent spaces.

From a practical point of view, the hyperbolic and spheri-
cal cases are fairly straightforward and we have implemented
both of them. Thus, we are able to compare layouts obtained
with the traditional Euclidean force-directed methods and
those obtained with the generalized force-directed methods
in hyperbolic space and in spherical space, such as those in
Fig. 1.

2 Related Work

2.1 Force-Directed Layouts

Force-directed algorithms are a well-known and powerful
tool for laying out arbitrary graphs [1, 4, 8]. Such methods
define an objective function which maps each graph layout
into a number in R

+ representing the energy of the layout.
Generally, this energy function is defined in such a way that
low energies correspond to layouts in which adjacent nodes
are near some pre-specified distance from each other, but in
which non-adjacent nodes are well-spaced. A layout for a
graph is then calculated by finding a (often local) minimum
of this objective function.

One particularly useful way to find such a local minimum
is through a gradient descent method. In this model we
calculate forces (often via the negative gradient of the en-
ergy function) which result from the interaction between the
nodes in the graph. Generally, there are repulsive forces be-
tween all nodes, but also attractive forces between nodes
which are adjacent [4]. Alternatively, forces between the
nodes can be computed based on their graph distance, as de-
termined by the lengths of shortest paths between them [8].
The nodes are then moved according to the net force acting
upon them, and the process is repeated until a steady state
is reached or a maximum number of iterations is exceeded.

While early force-directed algorithms work well for small
graphs, recently such algorithms have been extended to deal
with graphs with hundreds of thousands of vertices using
multi-scale and spectral techniques [5, 7, 9].

With few exceptions, spring embedders thus far have been
restricted to n-dimensional Euclidean space. This restriction
is due in part to the simplicity of the algorithms when for-
mulated in Euclidean space, and in part to a reliance on the
convenient structure of Euclidean space with well-defined
notions of distances and angles. Some work, however, has
been done on constraining force-directed algorithms to the
surface of three-dimensional objects [15]. This work is based
on a differential equation formulation of the motion of the
nodes in the graph, and is flexible in that it allows a lay-
out on almost any object, even multiple objects. Since the
force calculations are made in Euclidean space, however, this

October 10-12, Austin, Texas, USA
0-7803-8779-1/04/$20.00 ©2004 IEEE

IEEE Symposium on Information Visualization 2004

207

method is inapplicable to certain geometries (e.g., hyperbolic
geometry).

Another example of graph embedding within a non-
Euclidean geometry is described in the context of gener-
ating spherical parameterizations of 3D meshes [6]. This
method produces such an embedding using a generalization
to spherical space of planar methods for expressing convex
combinations of points. This results in a non-linear system
of equations in three dimensions which when solved yields an
embedding on the unit sphere. Although no specific way of
solving this system of equations is described, it is likely that
certain ways of doing so would operate in a manner similar
to the method described in this paper, though the former is
not readily generalizable to non-spherical geometries.

2.2 Hyperbolic Graph Drawing

Much of the work on non-Euclidean graph drawing has been
done in hyperbolic space [11, 13] which offers certain ad-
vantages over Euclidean space. For example, in hyperbolic
space it is possible to compute a layout for a complete tree
with both uniform edge lengths and uniform distribution of
nodes. Furthermore, some of the embeddings of hyperbolic
space into Euclidean space naturally provide a fish-eye view
of the space, which is useful for “focus+context” visualiza-
tion [10]. Previous algorithms for calculating the layouts of
graphs in hyperbolic space, however, are either restricted by
their nature to the layout of trees and tree-like graphs, or to
layouts on a lattice.

The hyperbolic tree layout algorithms function on the
principle of hyperbolic sphere packing, and operate by mak-
ing each node of a tree, starting with the root, the center of
a sphere in hyperbolic space. The children of this node are
then given positions on the surface of this sphere and the
process recurses on these children. By carefully computing
the radii of these spheres it is possible to create aesthet-
ically pleasing layouts for the given tree. Although some
applications calculate the layout of a general graph using
this method, the layout is calculated using a spanning tree
of the graph and the extra edges are then added in without
altering the layout [12]. This method works well for tree-like
and quasi-hierarchical graphs, or for graphs where domain-
specific knowledge provides a way to create a meaningful
spanning tree. However, for general graphs (e.g., bipartite
or densely connected graphs) and without relying on domain
specific knowledge, the tree-based approach may result in
poor layouts.

Methods for generalizing Euclidean geometric algorithms
to hyperbolic space, although not directly related to graph
drawing, have also been studied [2]. It is shown that many al-
gorithms which operate in Euclidean space can be extended
to hyperbolic space by exploiting the properties of a Eu-
clidean model of the space (such as the Beltrami-Klein or
Poincaré). Our work follows a similar vein in that we use
the Poincaré model to implement the hyperbolic case of out
technique, though it differs in that this mapping alone is
not sufficient, as the notions of distance and linearity in the
Poincaré model do not match their Euclidean counterparts.

Hyperbolic and spherical space have also been used to
display self-organizing maps in the context of data visual-
ization [14, 16]. These methods extend the traditional use
of a regular (Euclidean) grid, on which the self-organizing
map is created, with a tessellation in spherical or hyperbolic
space. An iterative process is then used to adjust which el-
ements in the data-set are represented by the intersections.
Although the hyperbolic space method seems a promising

Figure 1: Drawings of the same simple, undirected graph obtained

in Euclidean R2 space, hyperbolic H2 space and spherical S2 space.

The graph has 121 nodes and 140 edges.

way to display high-dimensional data-sets, the restriction to
a lattice is often undesirable for graph visualization.

3 Non-Euclidean Spring Embedding

3.1 Basics of Riemannian Geometry

Current implementations of force-directed algorithms per-
form their calculations in R

n, the standard Euclidean space.
Euclidean geometry has properties which afford many conve-
niences for calculating a graph layout with a force-directed
method. In particular, Euclidean space has a very conve-
nient structure; it is easy to define distances and angles,
and the relationship between the vector representing the net
force on an object and the appropriate motion of that object
is quite straightforward.

A non-Euclidean geometry does not afford all of the con-
veniences above, so it is more difficult to define how the

208

M

y

x

xT M

Figure 2: A curve and its derivative in the tangent space.

forces acting upon a graph should be calculated, and how
those forces should affect the layout of the graph. There
is, however, a straightforward way to do this, provided we
restrict ourselves to geometries which are smooth.

Such geometries are known as Riemannian geometries,
and while they have less convenient structure than Euclidean
geometry, they retain many of the characteristics which are
useful for force-directed graph layouts. A Riemannian man-
ifold M has the property that for every point x ∈ M , the
tangent space TxM is an inner product space; see Fig. 2.
This means that for every point on the manifold, it is possi-
ble to define local notions of length and angle.

Using the local notions of length we can define the length
of a continuous curve γ : [a, b] → M by

length(γ) =

∫ b

a

||γ′(t)||dt.

This leads to a natural generalization of the concept of
a straight line to that of a geodesic, where the geodesic be-
tween two points u, v ∈ M is defined as a continuously dif-
ferentiable curve of minimal length between them. These
geodesics in Euclidean geometry are straight lines, and in
spherical geometry they are arcs of great circles. We can
similarly define the distance between two points, d(x, y) as
the length of a geodesic between them.

3.2 Application to Spring Embedders

As mentioned above, one of the convenient properties of Rie-
mannian manifolds is that at every point there exists a well-
structured tangent space. We utilize these tangent spaces
to generalize spring embedders to arbitrary Riemannian ge-
ometries.

In Euclidean space the relationship between a pair of
nodes is defined along lines: the distance between the two
nodes is the length of the line segment between them and
forces between the two nodes act along the line through
them. These notions of distance and forces can be extended
to a Riemannian geometry by having these same relation-
ships be defined in terms of the geodesics of the geometry,
rather than in terms of Euclidean lines.

The tangent space is also useful in dealing with the inter-
action between one point and several other points in non-
Euclidean geometries. Consider three points x, y, and z in
a Riemannian manifold M where there is an attractive force
from x to y and z; see Fig. 3.

As can be easily seen in the Euclidean case (but also true
in general) the net force on x is not necessarily in the di-
rection of y or z, and thus the natural motion of x is along
neither the geodesic toward y, nor that toward z. Determin-
ing the direction x will move requires the notion of angle.

FF

F

x z
x net

y

x

z

x y

Figure 3: Net force on x by two other points, y and z.

Since the tangent space at x, being an inner product
space, has enough structure to define lengths and angles,
we do the computations for calculating the forces on x in
TxM . In order to do this, we define two functions for every
point x ∈ M as follows:

τx : M → TxM

τ
−1
x : TxM → M.

These two functions map points in M to and from the
tangent space of M at x, respectively. We require that τx

and τ−1
x satisfy the following constraints:

1. τ−1
x (τx(y)) = y for all y ∈ M

2. ||τx(y)|| = d(x, y)

3. τx preserves angles about the origin

Using these functions it is now easy to define the way
in which the nodes of a given graph G = (V, E) interact
with each other through forces. In the general framework
for this algorithm we consider each node individually, and
calculate its new position based on the relative locations
of the other nodes in the graph (repulsive forces) and on
its adjacent edges (attractive forces). Given a node n ∈
V (G) with position x we use τx to map the positions of
the relevant nodes of G into TxM (nodes that are used in
computing x’s new location). A standard force equation can
then be used to calculate the force, f upon n as a vector
in TxM . Given the vector in TxM , the new position, x′ of
n in TxM is calculated using standard techniques, typically
by multiplying f by a scalar. The desired position of n in
M is then given by τ−1

x (x). Pseudo-code for this process is
summarized in Fig. 4.

4 Hyperbolic Geometry

4.1 Motivation

One of the most useful applications for our non-Euclidean
force-directed method is that it allows the layout of a general
graph to be calculated in hyperbolic space (space of constant
negative curvature). This provides a functionality beyond
current hyperbolic graph layout techniques. Such function-
ality is desirable because of both the geometric properties
of hyperbolic space and of the properties of some of the
more common ways of mapping hyperbolic geometry into
Euclidean space.

Hyperbolic geometry is particularly well suited to graph
layout because it has “more space” than Euclidean geom-
etry – in the same sense that spherical geometry has “less

209

generic initial layout(G)
while not done do

foreach n ∈ G do
position[n] := force directed placement(n, G)

end
end

non Euclidean initial layout(G)
while not done do

foreach n ∈ G do
x := position[n]
G′ := τx(G)
x′ := force directed placement(n, G′)
position[n] := τ−1

x (x′)
end

end

Figure 4: A generic Euclidean spring embedder and its non-Euclidean

counterpart.

space”. To illustrate this, consider the relationship between
the radius and circumference of a circle in a two-dimensional
geometry. In Euclidean geometry the relationship is linear
with a factor of 2π. In spherical geometry, however, the
circumference is bounded above by a constant (the circum-
ference of a great circle on the sphere). With hyperbolic
geometry the opposite is the case; the circumference of a
circle increases exponentially with its radius.

The applicability of this geometric property to graph lay-
out is well illustrated with the example of a tree. The num-
ber of nodes at a certain depth in the tree typically increases
exponentially with the depth. Thus, layouts in Euclidean
space result in characteristic long edges near the root and
short edges near the leaves. In hyperbolic space, however, it
is possible to layout the tree with a uniform distribution of
the nodes and with uniform edge lengths.

4.2 Hyperbolic Projections

In order to display a layout in hyperbolic geometry, it is
necessary to map the figure into the (two-dimensional) Eu-
clidean geometry of a computer monitor. There are numer-
ous ways of doing this, two of the most common being the
Poincaré disk and Beltrami-Klein projections. In both of
these cases the hyperbolic space is mapped onto the open
unit disk {z ∈ R

2 : |z| < 1}. To obtain such projections it is
necessary to distort the space, which in these cases takes the
form of compressing the space near the boundary of the unit
disk, giving the impression of a fish-eye view. This naturally
provides a useful focus+context technique for visualizing the
layouts of the graph; see Fig. 5 and Fig. 6.

In the Beltrami-Klein projection straight lines are mapped
to straight lines, but angles are not necessarily preserved.
Thus, each line in hyperbolic space is mapped to a chord of
the unit disk, and two lines are non-intersecting if their as-
sociated chords are non-intersecting. Furthermore, the dis-
tance between two points, (x, y) and (u, v), in the Beltrami-
Klein model is not given by their Euclidean distance, but
rather by

arccos

[

1 − xu − yv
√

(1 − x2 − y2)(1 − u2 − v2)

]

.

The Poincaré disk model preserves angles, but distorts
lines. A line in hyperbolic space is mapped to a circular arc

Figure 5: A 5×5 mesh laid out in a hyperbolic geometry and projected

onto the Poincaré disk.

Figure 6: The same mesh as in Fig. 5, but projected with a different

center of attention.

which intersects the unit circle at right angles (chords pass-
ing through the origin are considered to be such arcs). As
with the Beltrami-Klein model, distances in the projection
are not equal to the the hyperbolic distances between the
points. The Poincaré disk model also compresses the space
slightly less at the edges, which in some cases can have the
advantage of allowing a better view of the context around
the center of projection. In this paper we focus on an im-
plementation which uses the Poincaré disk model.

4.3 Tangent Space Mapping

There are many possible ways to compute the mapping to
and from the tangent space. Here we present the details
about one such mapping, which we also implemented. As
illustrated in Fig. 4, the problem reduces to defining the
mappings τx and τ−1

x so that they meet the three criteria
from Section 3.1.

210

Internally, each node in the graph is assigned a position
z = (x, y) within the unit disk, representing the Poincaré
coordinates of that node. Using the Poincaré coordinates
for the positions of points allows us to take advantage of the
property that in a Poincaré projection angles are preserved
and circles and lines are mapped to circles and lines. Since
hyperbolic space is uniform, we can ‘recenter’ the projection
about any point, z0, by applying a conformal (angle preserv-
ing) mapping which maps z0 to the origin, the boundary of
the unit circle to itself, and which maps circles and lines to
circles and lines. By treating the position of the node as a
complex number, we can define such a mapping as the linear
fractional transformation:

fz0
(z) =

z − z0

1 − z̄0z
.

It is also easy to compute the inverse of this function:

f
−1
z0

(z) =
−z − z0

−z̄0z − 1
.

By using f to recenter the projection about z0 we force all
geodesics passing through z0 to be projected as line segments
passing through the origin. Furthermore, the Euclidean an-
gle formed between two such lines is equal to the angle by
which the two corresponding geodesics intersect. This satis-
fies criteria 1, and 3 for the function τz, but the norm of the
points (their distances from the origin) after the mapping f
is not equal to their distances from z0 in the hyperbolic space
(as a consequence the range of the inverse function is also
only the unit disk). To remedy this, we rescale the points
such that their distances from the origin is indeed equal to
their hyperbolic distance from z0. Note that this does not
alter angles at the origin. This is accomplished with another
mapping, denoted by g as follows:

gz0
(z) =

z

||z||
log

(

1 + ||z||

1 − ||z||

)

.

It is also possible to find the inverse of this mapping:

g
−1
z0

(z) =
z

||z||

∣

∣

∣

∣

1 − e||z||

1 + e||z||

∣

∣

∣

∣

.

Now we can define τz0
by composing these two mappings:

τz0
= g ◦ f.

Similarly, we can define τ−1
z0

as:

τ
−1
z0

= f
−1 ◦ g

−1
.

It can be verified that τz0
and τ−1

z0
as defined above, indeed

satisfy the three criteria for functions mapping to and from
the tangent space, and thus these two functions are sufficient
to implement a spring embedder in hyperbolic geometry.

5 Spherical Geometry

As a further example for generalizing spring embedders to
non-Euclidean geometry we also consider spherical geome-
try. As with hyperbolic geometry, spherical geometry has
a constant curvature and the equations for mapping to and
from the tangent space can be calculated analytically.

Each point in a spherical geometry is defined by its co-
ordinates, θ ∈ [0, 2π) and φ ∈ [0, π), representing the
longitude and latitude of the point, respectively. This
spherical geometry can then be embedded as a sphere in

three-dimensional Euclidean space by the parametrization
(cos θ sin φ, cos φ, sin θ sin φ). We can calculate the tangent
plane at any point on the sphere by taking the space spanned
by the two partial derivative vectors:

u = (− sin θ sin φ, 0, cos θ sin φ)

v = (cos θ cos φ,− sin φ, sin θ cos φ).

Note that if applied at either of the poles, these equations
fail to yield a valid space, so in these cases the u and v vectors
can be hard-coded to, for example, (1, 0, 0) and (0, 0, 1).

We can now compute τx(y) for any points x and y in the
spherical geometry by projecting the embedding of y, emb(y)
onto the tangent plane at x with (emb(y) · ux, emb(y) · uy).
To complete the mapping we have only to set the length of
this vector equal to the length of the geodesic between x and
y:

r · arccos [sin φx sin φy cos θy − θx + cos φx cos φy],

where r is the radius of curvature of the geometry. An illus-
tration of this mapping can be seen in Fig. 7.

x

y

Figure 7: Mapping to the tangent space via mapping to the tangent

plane, followed by a renormalization for the length of the vector in

the tangent space.

The inverse of this mapping τ−1
x (y), illustrated in Fig. 8,

can also be computed in a similar geometric manner. First,
we compute a vector, p, perpendicular to that from τx(y) in
the tangent space. The vector p is then mapped to the cor-
responding vector in three dimensional space by upx + vpy.
This vector is perpendicular to the plane containing the ori-
gin, τ−1

x (x) and τ−1
x (y). Thus the desired point τ−1

x (y) can
be obtained by rotating τ−1

x (x) about this axis so that the
arc length traveled by τ−1

x (x) is equal to the norm of τ−1
x (y).

In radians, this angle is |y|
r

. Since this rotated vector is in
Euclidean space, the calculation can be completed by pro-
jecting it back onto the sphere by calculating θ = arctan z

x
,

φ = arccos y.

6 Example Layouts in H
2 and S

2

In Figures 9-11 we consider a title-word graph obtained from
the graph drawing literature [3]. This graph has 27 nodes
and 50 edges. The graph nodes correspond to title-words
from papers in the Proceedings of the 1999 Symposium on
Graph Drawing. The size of a node is determined by the
frequency of the corresponding word and an edge is placed
between two nodes if they co-occur in at least one paper.

The images in the Figures 9-11 were obtained using our
implementation of the algorithms described in this paper.

211

x

y

Figure 8: Mapping from the tangent space via a rotation.

Fig. 9 shows three views of the graph using different centers
of attention, and nicely illustrates the focus+context prop-
erties of hyperbolic space. Fig. 10 shows three views of the
same graph in spherical space, again using different centers
of attention. Finally, Fig. 11 contains layouts of the same
graph obtained in R

2, H
2 and S

2.

7 Conclusion and Future Work

We presented a simple algorithm for generalizing a spring
embedder to an arbitrary Riemannian geometry. This
method relies on only very general features of spring em-
bedders, and thus can be applied in principle to most force-
directed layout methods. We also presented the details for
the specific cases of hyperbolic and spherical geometries as
well as some layouts obtained with our implementation.

Although the methods presented here are sufficient to
generalize a spring embedder into any Riemannian geom-
etry, there are still many practical concerns that need to
addressed. While the mathematics needed to determine τx

and τ−1
x are relatively simple for the cases of hyperbolic

and spherical geometries, this is not always the case. It
is not even possible, in general, to analytically calculate the
geodesic between two points in an arbitrary geometry. It
is likely the case that for more complex geometries approx-
imate methods will have to be used to determine τx and
τ−1

x .

Perhaps most importantly with regard to information vi-
sualization, we would like to make our method scalable. As
with traditional force-directed algorithms, our method does
not work well for very large graphs. Finding low energy
states becomes increasingly difficult as the input graphs get
larger. Multi-scale methods and high dimensional embed-
ding have been successfully used to extend Euclidean spring
embedders. Generalizing the non-Euclidean spring embed-
ders along the lines of [5, 7] should be possible. This would
allow us to experiment with the layouts of very large graphs
in these geometries, and thus to fully exploit their properties
to better visualize large data-sets.

8 Acknowledgments

We would like to thank the anonymous referees for pointing
out two publications, relevant to our work [2, 6].

References

[1] P. Eades. A heuristic for graph drawing. Congressus Nu-

merantium, 42:149–160, 1984.
[2] D. Eppstein. Hyperbolic geometry, Möbius transformations,

and geometric optimization. In MSRI Introductory Work-

shop on Discrete and Computational Geometry, 2003.
[3] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and

G. Yee. GraphAEL: Graph animations with evolving layouts.
In 11th Symposium on Graph Drawing, pages 98–110, 2003.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph draw-
ing by force-directed placement. Software — Practice and

Experience, 21(11):1129–1164, 1991.
[5] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A

multi-dimensional approach to force-directed layouts of large
graphs. Computational Geometry: Theory and Applications,
29(1):3–18, 2004.

[6] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spher-
ical parameterization for 3D meshes. In ACM Transactions

on Graphics, 22, pages 358–363, 2003.
[7] D. Harel and Y. Koren. A fast multi-scale method for draw-

ing large graphs. Journal of graph algorithms and applica-

tions, 6:179–202, 2002.
[8] T. Kamada and S. Kawai. An algorithm for drawing general

undirected graphs. Information Processing Letters, 31(1):7–
15, Apr. 1989.

[9] Y. Koren, L. Carmel, and D. Harel. ACE: A fast multiscale
eigenvector computation for drawing huge graphs. In Pro-

ceedings of IEEE Symposium on Information Visualization,
pages 123–144, 2002.

[10] J. Lamping, R. Rao, and P. Pirolli. A focus+context tech-
nique based on hyperbolic geometry for visualizing large hi-
erarchies. In Proceedings of Computer Human Interaction,
pages 401–408. ACM, 1995.

[11] T. Munzner. H3: Laying out large directed graphs in 3D
hyperbolic space. In L. Lavagno and W. Reisig, editors, Pro-

ceedings of IEEE Symposium on Information Visualization,
pages 2–10, 1997.

[12] T. Munzner. Drawing large graphs with h3viewer and site
manager. In 6th Symposium on Graph Drawing, pages 384–
393, 1998.

[13] T. Munzner and P. Burchard. Visualizing the structure of the
World Wide Web in 3D hyperbolic space. In Symposium on

the Virtual Reality Modeling Language, pages 33–38, 1996.
[14] J. Ontrup and H. Ritter. Hyperbolic self-organizing maps

for semantic navigation. In Advances in Neural Information

Processing Systems 14, pages 1417–1424, 2001.
[15] D. I. Ostry. Some three-dimensional graph drawing algo-

rithms. Master’s thesis, University of Newcastle, Australia,
1996.

[16] H. Ritter. Self-organizing maps on non-euclidean spaces. In
S. Oja, E. & Kaski, editor, Kohonen Maps, pages 97–110.
Elsevier, Amsterdam, 1999.

212

Figure 9: Layouts of the title-word graph with different centers of

attention in hyperbolic space.

Figure 10: Layouts of the title-word graph with different centers of

attention in spherical space.

213

Figure 11: Layouts of the title-word graph, obtained in R2, H2 and

S2. The graph has 27 nodes and 50 edges.

214

