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Figure 1: Results of RecMap — The area of each region corresponds to the number of people living there. The cartograms of Figures 1(a) and
1(c) contain no area error and no empty space error whereas in Figures 1(b), 1(d), and 1(e) no area error occurs and the shapes of the regions
are preserved. The colormap indicates the number of people (yellow: high; brown: low).

ABSTRACT

In many application domains, data is collected and referenced by its
geo–spatial location. Nowadays, different kinds of maps are used
to emphasize the spatial distribution of one or more geo–spatial at-
tributes. The nature of geo–spatial statistical data is the highly non–
uniform distribution in the real world data sets. This has several
impacts on the resulting map visualizations. Classical area maps
tend to highlight patterns in large areas, which may, however, be of
low importance. Cartographers and geographers used cartograms
or value–by–area maps to address this problem long before com-
puters were available. Although many automatic techniques have
been developed, most of the value–by–area cartograms are gener-
ated manually via human interaction.

In this paper, we propose a novel visualization technique for geo–
spatial data sets called RecMap. Our technique approximates a
rectangular partition of the (rectangular) display area into a num-
ber of map regions preserving important geo–spatial constraints. It
is a fully automatic technique with explicit user control over all ex-
ploration constraints within the exploration process. Experiments
show that our technique produces visualizations of geo–spatial data
sets, which enhance the discovery of global and local correlations,
and demonstrate its performance in a variety of applications.

Keywords: Geographic Visualization, Information Visualization,
Database and Data Mining Visualization

1 INTRODUCTION

The information revolution is creating and publishing vast data sets,
such as records of business transactions, environmental data, and
census demographics. In many application domains, this data is
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collected and indexed by geo–spatial locations. The discovery of
interesting patterns in geo–spatial databases is a key to turn this
data into valuable information. Nowadays, different kinds of maps
are used to emphasize the spatial distribution of one or more geo–
spatial attributes. The nature of geo–spatial data is the highly non–
uniform distribution in real world data sets which has several im-
pacts on the resulting map visualizations. Imagine a data analyst
who uses a traditional map, for example the U.S. map, and who
wants to find very quickly potentially valuable information. The
problem of using classical area maps is that they tend to highlight
patterns in large areas, which may, however, be of low importance.
It is mostly impossible for the data analyst to understand the pre-
sented geo–spatial information quickly, since this visual model does
not address the human perception skills.

Cartographers and geographers used cartograms or value–by–area
maps to address this problem long before computers were avail-
able. The basic idea of a cartogram is to distort a map by resizing
its regions according to some external geography–related parame-
ter. First hand–made cartograms can be found in [12, pp. 216–217].
Here, the area of a region corresponds to its population in 1958.
(A detailed description of how to construct rectangular cartograms
manually can be found in [12].) However, the manual construction
of cartograms is a very difficult task because, on the one hand, we
have to resize the regions according to their geo–spatial statistical
values and, on the other hand, we have to take into account that the
(original) shapes of the regions and their neighborhood relation-
ships (topology) are preserved as much as possible.

Consequently, the study of automated methods for drawing car-
tograms is of considerable interest. In the meantime, many auto-
matic cartogram generation techniques have been developed (for an
overview see [5, 7]). Circular cartograms [1] (see Figure 2(a)) ig-
nore the shape of the input polygons completely and represent them
as circles. In many cases, the area and topology constraints have to
be relaxed, too. The general applicability of this technique is open
to question. TreeMaps [6], which are a well–known information
visualization technique, are an appropriate method to display data
with a given hierarchic order. They divide the display area into
rectangles such that the area of each rectangle corresponds to its
statistical value. Figure 2(b) displays an example where TreeMaps
are used for visualizing U.S. census data. To the best of our knowl-
edge there do not exist any automatic procedures which compute
the split hierarchy of the map. This work has to be done by the user
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(a) A screen capture of Dorling’s Circle Cartograms [1] using the
2000 U.S. population data and the cdv-tool. [2]

(b) Treemap — interactively controlled method based on
TreeMaps [10] – Visualizations of the presidential race in 2000.

Figure 2: Related work on RecMap

via interaction. Most of the techniques which have been presented
so far do not take the shape and the topology of the map into ac-
count, e.g. [1], or the area error on continuous cartograms cannot
be eliminated completely, e.g. [7].

2 OUR CONTRIBUTION

The idea of this work is to approximate familiar land covering map
region shapes by rectangles and to find a partition of the available
screen space where the areas of these rectangular regions are pro-
portional to given statistical values. In order to support the under-
standing of the information represented by a cartogram we try to
place the rectangles as close as possible to their original positions
and as close as possible to their neighbors. We define two vari-
ants of this optimization problem and present two corresponding
(heuristic) algorithms which generate space filling partitions of the
screen space with respect to the given geo–locations. Both algo-
rithms construct cartograms where the area of each rectangle of the

Figure 3: The Figures show the adjacency graphs of the U.S. map
(left) and a corresponding map partition (right). The red colored seg-
ments indicate the topology error.

cartogram is proportional to its area within the map. The differ-
ence between these heuristics is that the first method does not allow
empty space, whereas the second one preserves the shapes of the
polygons.

The remainder of this paper is organized as follows: Section 3 is
devoted to a formal description of the (variants of the) map parti-
tion problem or cartogram problem. In Section 4, we present two
heuristic solution procedures. The efficiency of our new approach
as well as some application examples are shown in Section 5.

3 PROBLEM DEFINITION

In this section, we give a formulation of the problem of determining
a near–optimal cartogram P = {p1, . . . , pR} for a given map P =
{p1, . . . , pR} consisting of R polygons or regions and vector Z =
(zr)r=1,...,R of spatial data values zr ≥ 0 with ∑R

r=1 zr = 1. For this,
we first refer to the constraints which have to be met during the
optimization process. Hereafter, we turn to the single components
of the objective function.

3.1 Constraints

When determining P we can choose among several possibilities of
representing the regions of P. We have decided to use rectangular
polygons as in this way the expressiveness of P is not impaired
by insignificant details of the shapes of the polygons of P. As
indicated before, we name this type of cartogram rectangular map.
Hence, we have to meet the following constraints in any case:

• P is planar,

• each polygon p ∈ P is a rectangle, and

• each polygon p∈P is neighbor of at least one different poly-
gon p′ ∈ P .

A cartogram P obeying these constraints is called feasible. The set
of feasible cartograms is denoted by M .

3.2 Objective function

The quality of P depends on two aspects: First, we have to evaluate
whether the polygons of P can be easily recognized in P . Sec-
ond, the areas of the polygons of P have to reflect the geo–spatial
data values given by Z. In general, these requirements represent
conflicting goals. Based on these aspects, we use five criteria in or-
der to evaluate the quality of P . These criteria, which correspond
to the components of the objective function, are presented in the
following.
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Area The quality of P w.r.t. the criterion “area” is measured
by the area error A(P) = A(P,Z) with

A(P) :=
1
R
·

R

∑
r=1

|εr − zr|

zr
. (1)

A(P) equals the average relative deviation of the actual share εr :=
a(pr)/A f (P) of the area a(pr) of a polygon pr in the filled space
or filled area A f (P) := ∑R

r=1 a(pr) of P from its desired share zr
in A f (P).

Shape The shape error S(P) = S(P,P) reflects the average
relative deviation of the shape of a polygon pr ∈ P from that of its
corresponding polygon pr ∈ P and is determined as follows:

S(P) :=
1
R
·

R

∑
r=1

|s(pr)− s(pr)|

s(pr)
. (2)

The shape s(pr) or s(pr) of a polygon pr ∈ P or pr ∈ P is mea-
sured by the ratio of its maximum extension in horizontal direction
and its maximum extension in vertical direction, respectively.

Topology The topology error T (P) is an indicator of the de-
viation of the neighborhood relationships given by P from those
given by P. To obtain T (P), we first have to compute the ad-
jacency graphs or pseudo dual graphs Ga and Ga of P and P ,
respectively. An adjacency graph reflects the neighborhood rela-
tionships between the polygons of a polygon mesh (cf. [9], p. 267).
To obtain that graph, we first introduce a vertex for each polygon of
the polygon mesh. Next, for each pair of neighbored polygons, we
add an edge between the corresponding vertices.

T (P) = T (P,P) with

T (P) :=
|Ea\Ea|+ |Ea\Ea|

|Ea ∪Ea|
, (3)

where Ea and Ea denote the set of edges of Ga and Ga, respectively,
reflects the number of neighborhood relationships being solely con-
tained in one of both polygon meshes and is normalized to the in-
terval [0,1]. An example for the calculation of T (P) is given by
Figure 3.

Relative polygon positions An important criterion for the
recognizability of the polygons in P are their relative positions.
But since they are only partially reflected by the adjacency graph
we use the (relative) position error R(P) = R(P,P) with

R(P) :=
2

R · (R−1)
·

1
180◦

·
R−1

∑
r=1

R

∑
ρ=r+1

αr,ρ , (4)

which is normalized to the interval [0,1]. αr,ρ := arccos(~ur,ρ ·

~ur,ρ )/(|~ur,ρ | · |~ur,ρ |) measures the deviation of the relative positions
of polygons pr and pρ from those of pr and pρ with the help of
vectors~ur,ρ = c(pρ )− c(pr) and ~ur,ρ = c(pρ )− c(pr) where c(pr)

and c(pr) stand for the centers of gravity of pr and pr, respectively.

Empty space As we make use of rectangular maps it might
happen that P contains “holes” or empty space which comprises
those areas which are completely surrounded by filled space, i.e. by
polygons of P . Consequently, we also measure the quality of P

by the empty space error E(P) with

E(P) :=
At(P)−A f (P)

At(P)
, (5)

which equals the share of empty area in the total area At(P) of P .
At(P) stands for the space being enclosed by the boundary of P .
Again, E(P) is normalized to the interval [0,1].

3.3 Formulation of the optimization problem

To give the user full control over the visualization goals we have
developed two variants of the map partition problem each of them
focussing on different components of objective function F(P) =
(A(P),S(P),T(P),R(P),E(P)).

Variant 1 (MP1) Since one of the most important aspects w.r.t.
the expressiveness of cartograms is that spatial data is represented
by area, we require that A(P) equals zero. In order to use the
full screen space, we demand that E(P) equals zero, too. Hence,
using the constraints and the components of F which have been in-
troduced above, we can state the first variant of the map partition
problem being considered in this paper as the following vector min-
imum problem:

Min. F(P) (6)
s.t. P ∈ M , A(P) = 0, and E(P) = 0. (7)

Variant 2 (MP2) Like for (MP1), we demand that no area er-
ror occurs. Second, in order to take the recognizability of the poly-
gons into account, we do not allow any shape error. Consequently,
we obtain the following optimization problem:

Min. F(P) (8)
s.t. P ∈ M , A(P) = 0, and S(P) = 0. (9)

It is likely that (MP1) and (MP2) represent N P–hard optimiza-
tion problems.

4 THE RecMap ALGORITHM

In the following, we are going to present heuristic solution proce-
dures for both variants of the map partition problem. First, we refer
to a heuristic for (MP1). Hereafter, we present a method which
computes a near–optimal solution for (MP2).

To obtain cartograms of high quality, we repeat the construction of
cartograms using a genetic algorithm (cf. [4], 2000) which guides
the optimization process. In each iteration of this meta heuristic,
a set or generation of cartograms or individuals is generated. An
individual is characterized by three aspects: the genotype, the con-
struction algorithm, and the phenotype. The genotype stands for the
information needed to generate the corresponding phenotype using
a certain construction algorithm. In our context, the genotype cor-
responds to an array of nonnegative integers and the phenotype to a
(feasible) cartogram.

The individuals of a generation are evaluated by means of a
weighted objective function F̂ which is derived from F . Then,
we select a predefined number of best individuals and determine
the next generation out of their genotypes by applying replication
and mutation. This process is repeated until a predefined number
of generations has been generated or a given amount of time has
elapsed. The best cartogram which has been found so far is re-
turned.

The weights of F̂ can be set by the user according to her or his
visualization goals. In this way, the user gains control over the vi-
sualization process and result. The effect of different weights on the
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(a) Graph topology constraint (b) Relative position con-
straint

(c) Empty space constraint (d) A combination of all con-
straints

Figure 4: Cartograms P resulting from different weights for the com-
ponents of F

resulting cartograms is demonstrated in Figure 4 w.r.t. our heuristic
for (MP2). For example, Figure 4(a) shows the cartogram which is
obtained if the weight for T (P) is set to one and the other weights
are set to zero. (Figures 4(b) and 4(c) have to be interpreted in an
analogous manner.) The cartogram of Figure 4(d) is obtained if all
weights are set to one.

4.1 Variant 1

4.1.1 Basic idea

In order to achieve E(P) = 0, our heuristic is based on the proce-
dure of [8] which — starting with a single rectangle — computes
a sequence of partial cartograms P̃ by adding a rectangle in each
step in such a way that no empty space can occur. In the following,
we first give a detailed description of this basic procedure which
serves as the construction algorithm within our genetic algorithm.

4.1.2 Initialization step

In the initialization step, we first draw the initial partial cartogram
which consists of a rectangle, denoted by p1, with an horizontal
extension of maxr=1,...,R maxi=1,...,nr xr

i −minr=1,...,R mini=1,...,nr xr
i

and a vertical extension of maxr=1,...,R maxi=1,...,nr yr
i −

minr=1,...,R mini=1,...,nr yr
i . (nr stands for the number of nodes of

pr and (xr
i ,y

r
i ) for the position of the ith vertex of pr in clockwise

order.) Second, we compute the center of gravity c(pr) for each
polygon p ∈ P and plot this point into the starting rectangle. In
the following, the polygons of P are represented by their centers
of gravity.

4.1.3 Main step

In the main step, we perform a sequence of so–called splits. Each
split refers to a rectangular polygon p ∈ P̃, which contains at least
two centers of gravity, and divides it into two new rectangular poly-
gons, each of them containing at least one center of gravity. In

this way, we construct a sequence of partial cartograms P̃ with no
empty space error. Each p ∈ P̃ represents the aggregation of those
polygons of P which correspond to the centers of gravity c(pr) be-
ing contained in p (i.e. c(pr) ∈ p). The main step ends, when each
rectangle contains exactly one

center of gravity and hence no further split can be done. Conse-
quently, after R− 1 splits we obtain a partial cartogram P̃ with
R polygons. This final (partial) cartogram corresponds to a (com-
plete) cartogram: P := P̃ . The polygons of P have to be re–
numbered because, as indicated before, a rectangle p ∈ P repre-
sents that polygon pr ∈ P which corresponds to the single center
of gravity being included in p. Therefore, p gets the index r.

We differ between two types of splits: a horizontal split and a verti-
cal split. A horizontal (vertical) split introduces a horizontal (verti-
cal) splitting line into the rectangle p ∈ P̃ to be split, which results
in two new polygons p′ and p′′ with p′ being below (left) of p′′.
Splitting is done in such a way that, after each split, we have for the
current partial cartogram P̃

a(pr)

|P̃|

∑
ρ=1

a(pρ )

= ∑
c(pr)∈p

zr (r = 1, . . . , |P̃|), (10)

i.e. the area of pr ∈ P̃ is proportional to the sum ∑c(pr)∈p zr of the
spatial data values of the polygons pr ∈ P being associated with
c(pr) ∈ p (r = 1, . . . , |P̃|).

We try to split a polygon p ∈ P̃ as equally as possible: If we do a
horizontal (vertical) split, we scan the points c(pr)∈ p from bottom
to top (left to right), and add them to p′ until we have

∑
c(pr)∈p′

zr ≥
1
2
· ∑

c(pr)∈p
zr. (11)

Those centers of gravity of p which have not been added to p′ are
added to p′′. If p contains two centers of gravity, we stop after
having scanned the first. Provided that we perform a horizontal or
vertical split of pr ∈ P̃ , the splitting line is placed into pr such that
the height or the breadth of p′ equals

∑c(pr)∈p′ zr

∑c(pr)∈p zr
· (yr

3 − yr
1) or

∑c(pr)∈p′ zr

∑c(pr)∈p zr
· (xr

3 − xr
1) , (12)

respectively.

4.1.4 The RecMap –algorithm for Variant 1

A major drawback of the procedure described in the previous sec-
tion is its rigidity. This means, that the polygons resulting from
a horizontal split have to be split vertically in any case and vice
versa. But in this way, no special attention is paid to the shapes
of the polygons and the neighborhood relationships between them.
For example, if the majority of the polygons p ∈ P possesses a
longish shape (i.e. s(p) < 1) the procedure might lead to seriously
deformed cartograms, i.e. cartograms P with high values for S(P)
and T (P). In such a case, it would have been indicated to prefer
vertical splits.

This drawback can be avoided by using split sequences. For exam-
ple, let a cartogram P be obtained by performing a horizontal split
and two vertical splits afterwards. If we associate a horizontal split
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with 0 and a vertical split with 1, we get the split sequence (0,1,1).
This split sequence can be conceived as the genotype of P . In
general, the genotype of a cartogram is a vector (Iλ )λ=1,...,R−1 of
(binary) values Iλ ∈ {0,1}.

To use the construction algorithm described above w.r.t. a given
split sequence (Iλ )λ=1,...,R−1, it has to be adapted accordingly. For
this, we introduce variable λ which stands for the split position
which is currently considered. Iλ represents the splitting type to be
chosen for the λ th split. At the end of the algorithm, λ equals R−1.
The adapted construction algorithm is given by Algorithm 1.

STEP 1 (initialization step)
P̃ := {p1}; S := {p1}; λ := 1
STEP 2 (main step)
WHILE S 6= /0 DO

Remove p from S

IF |{pr ∈ P|c(pr) ∈ p}| > 1 THEN
IF Iλ = 0 THEN

Split p horizontally into p′ and p′′

ELSE
Split p vertically into p′ and p′′

S := S ∪{p′′}; S := S ∪{p′}

P̃ := P̃\{p}; P̃ := P̃ ∪{p′, p′′}
λ := λ +1

RETURN P̃

Algorithm 1: Construction procedure for the MP1 heuristic

4.2 Variant 2

4.2.1 Basic idea

In literature, we find an optimization problem in the context of
inner–plant layout planning (cf. [9], pp. 255) which shows certain
similarities to (MP2). This layout problem can be roughly stated
as follows: We are given a rectangular site, a set of machines (be-
ing described by their ground plans), and the amounts of material
which have to be transported between them. The objective is to find
a layout, i.e. a plan with the positions of the machines on the site,
such that the transportation costs are minimized, i.e. that machines
with a high transportation intensity in between are located as close
as possible. The map partition problem considered here is similar
to the layout problem in so far as we are also given a set of rect-
angular areas (i.e. polygons) which have to be placed such that the
distances between them are taken into consideration.

The construction algorithm of our heuristic for (MP2) relies on two
ideas of the procedure of [3] which is derived from a graph theo-
retical model of the layout problem. First, in the initialization step,
we choose a specific polygon, called the core polygon pc, to be
the center of the layout or cartogram. Second, in the main step,
we construct a sequence of partial layouts or partial cartograms
P̃ , i.e. starting with pc, the remaining R− 1 polygons are placed
around it one after the other until we have found a (complete) car-
togram P := P̃ .

4.2.2 Initialization step

As the area error and the shape error ought to be zero, the
breadth b(pr) and height h(pr) of each polygon pr ∈ P are given
by

b(pr) :=
√

zr ·∑R
r=1 a(pr) · s(pr) and (13)

h(pr) :=

√
zr ·∑R

r=1 a(pr)

s(pr)
, (14)

respectively. The core polygon pc is determined with the help of an
extension Gax of Ga which is obtained by introducing an additional
node R + 1 for the outer region of P. pc corresponds to a polygon
pr which has the maximum distance dr,R+1 from the outer region
pR+1 where the distance between two polygons is measured by the
minimum number of edges between their corresponding nodes in
Gax .

4.2.3 Main step

As indicated before, the main step consists of R− 1 partial steps.
In each of these steps, we choose an index r among the set of in-
dices of those polygons which have not yet been created and added
to P̃ . Let Q denote the set of indices of the polygons pr ∈ P̃.
Then, the index of the newly created polygon has to be taken from
{1, . . . ,R}\Q. Since the maintenance of the neighborhood relation-
ships of P is of high importance w.r.t. the recognizability of the
polygons of P , we have a look at Ga in order to determine the
index r′ of the polygon to be added next. We demand that the cor-
responding polygon pr′ ∈ P is a neighbor of at least one of those
polygons pr ∈ P the indices of which are contained in Q because
otherwise, the adjacency graph of the resulting partial cartogram P̃

would not be connected and we could no longer guarantee P ∈M

for the final cartogram P . Let N (pr) denote the set of neighbors
of pr in P, i.e. N (pr) = {pρ |(r,ρ) ∈ Ea}. If there are several
indices which could be selected, we choose the lowest one. Thus,
we set

r′ := min{r ∈ {1, . . . ,R}\Q|pr ∈
⋃

ρ∈Q
N (pρ )}. (15)

After the determination of r′ we have to decide where to place the
corresponding polygon pr′ . In general, there exists an infinite num-
ber of possible positions for pr′ . In order to keep the computational
time low, we have to restrict ourselves to a finite subset.

Pretests have revealed that the following procedure is favorable: We
scan the edges e of the boundary E of P̃ and determine a set Πe
of possible positions for pr′ w.r.t. e. For example, we add the end
points and the middle point of e to Πe as possible positions of the
lower left corner of pr′ . To keep the number of possible positions
low and to exclude infeasible positions, each position (x,y) ∈ Πe is
checked within a multi–stage test. For instance, we remove those
positions from Πe which cause a violation of the planarity or which
could lead to unacceptable high values of T (P) or R(P).

Subsequent to the determination of the sets Πe we select the best
position (x?,y?) and create pr′ at that position. (x?,y?) is found as
follows: Let Π denote the set of all feasible positions which have
been found so far. For each position (x,y) ∈ Π, we temporarily
extend P̃ by adding the newly created polygon pr′ at (x,y) and
compute a weighted sum F̂(P̃) of the values of the components
of F . The position associated with the minimum value of F̂ equals
(x?,y?).
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4.2.4 The RecMap –algorithm for Variant 2

As the order in which the polygons are added to P̃ is of high im-
portance we have to encode this information by the genotype of P

which equals a vector (Iλ )λ=1,...,R of values Iλ ∈ {1, . . . ,R} with
Iλ 6= Iλ ′ for λ 6= λ ′ (λ ,λ ′ ∈ {1, . . . ,R}). For the use within our
genetic algorithm–based heuristic, we have to adapt the choice of
r′ accordingly. This means, that among the set of indices of those
polygons which are neighbors of polygons pr with r ∈ Q, we select
that index r′ which is the first of them in I. Hence, (15) has to be
modified as follows:

r′ := min{λ ∈ {1, . . . ,R}|Iλ ∈ {1, . . . ,R}\Q and

pIλ
∈

⋃

ρ∈Q
N (pρ )}. (16)

The construction algorithm is given by Algorithm 2.

STEP 1 (initialization step)
Create Gax

r′ := min{r ∈ {1, . . . ,R}|dr,R+1 = maxρ=1,...,R dρ ,R+1}

Create pr′ at (0,0); P̃ := {pr′}; Q := {r′}; pc := pr′
STEP 2 (main step)
WHILE Q 6= {1, . . . ,R} DO

r′ := min{r ∈ {1, . . . ,R}\Q|pr ∈
⋃

ρ∈Q N (pρ )}

Q := Q∪{r′}
Π := /0
FOR e ∈ E DO

Determine Πe; Π := Π∪Πe

F̂? := ∞
FOR (x,y) ∈ Π DO

Create pr′ at (x,y); P̃ := P̃ ∪{pr′}

IF F̂(P̃) < F̂? THEN

(x?,y?) := (x,y); F̂? := F̂(P̃)

P̃ := P̃\{pr′}

Create pr′ at (x?,y?); P̃ := P̃ ∪{pr′}

RETURN P̃

Algorithm 2: Construction procedure for the MP2 heuristic

5 EFFICIENCY & APPLICATION

The algorithms described above were implemented in ANSI–C us-
ing the O4 compiler option and run on the operating systems
Microsoft Windows and UNIX. The tests were performed on a
1.5 GHz Intel Xeon server with 4 GB main memory under Linux
(only 1 MB was needed by the algorithms). In this section, we will
show some applications using the U.S. census data base and U.S.
election data.

Efficiency Figure 5 shows, for each generation, the best car-
togram which has been found so far by the heuristic for (MP2) and
Figure 6 illustrates the respective values of the errors. The values
for the (MP1) approach are illustrated, too. From these scatter-
plots we can conclude that the heuristic for (MP2) is more time

Figure 5: This Figure demonstrates the continuous improvement of
the feasible solutions for (MP2) with increasing number of genera-
tions. The computation time for each iteration equals 5 seconds.

Figure 6: The scatterplots display the errors over time yielded by
the (MP1) and (MP2) heuristics for U.S. state level. Note that the
time axes are logarithmically scaled. The whole computation time
for 10 iterations equals 0.33 seconds for (MP1) and 55 seconds for
(MP2).

consuming than that for (MP1). Since RecMap gives us a useful
visualization even after the first iteration the interactive exploration
of the data is guaranteed (see the cartogram yielded after Step 1 in
Figure 5).

U.S. election analysis We ran the algorithms on a number
of example data sets. Figures 7(b) and 7(c) show the U.S. electoral
voters corresponding to the presidential election result in 2000.

U.S. census analysis We have applied RecMap to the pop-
ulation data of the U.S. census data set. In Figure 8(a) we show the
original map on state and county level. On all maps of Figure 8 a
unipolar colormap (see Figure 8(h)) is used to indicate the number
of people. In Figures 8(b) and 8(c), highly populated regions, e.g.
L.A. and Chicago, are made clearly visible. Figures 8(d)–8(g) show
rectangular maps for California, New York state, and Texas using
RecMap for Variants 1 and 2. Please note that for all rectangular
cartograms the area error is zero.

RecMap has been integrated into our CartoView–System together
with other information visualization techniques for geo–spatial data
which have been introduced in the past [7, 8]. The interaction al-
lows us to make the exploration process more efficient and effec-
tive.

6 CONCLUSION & FUTURE WORK

In this study we have analyzed and discussed the problem of effi-
cient map partitioning and have proposed two automatic, scalable,
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and flexible algorithms called RecMap for generating rectangular
map partitions. Here, the user has an explicit control of all visual-
ization constraints. Our approach is novel because its features (no
area error, explicit control of shape, topology, empty space, and rel-
ative position constraints) are not provided by previous approaches.
This new technique enables interactive views of detail at various
levels to find very fast interesting patterns or subsets.

The experiments show that our algorithms offer good results for
a variety of applications, and their speed even allows an inter-
active display. Further research could comprise the combination
of our approach and other visualization techniques such as pixel–
oriented techniques (where the pixels could be placed directly into
their corresponding map partitions). Such a combination would al-
low to visualize areas with high information density. Additional
material (e.g. an executable file) and ongoing work can be found
on our web site http://dbvis.inf.uni-konstanz.de/
projects/RecMap.
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(a) Traditional map which can be accessed at [11]

(b) RecMap for (MP1)

(c) RecMap for (MP2)

Figure 7: Visualizations of the presidential race in 2000. The areas of
Figures 7(b) and 7(c) correspond to the numbers of electoral voters.
The red and the blue color depict which candidate has won each
state. The candidate who covers most of the area of all polygons in
Figures 7(b) and 7(c) has won the election.
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(a) Traditional U.S. map on state and county level

(b) Results of RecMap (Variant 1) using U.S. census population data on U.S. state and county level

(c) Results of RecMap (Variant 2) using U.S. census population data on U.S. state and county level

(d) CA using Variant 2 (e) NY using Variant 2 (f) TX using Variant 1 (g) TX using Variant 2 (h) Colormap

Figure 8: Population data from U.S. Census Bureau on various levels for the year 2000 – The area of each map partition corresponds to the
number of people living there. The colormap of Figure 8(h) indicates the number of people living in each region (yellow: high population; brown:
low population) and is a link from the traditional map to the corresponding map partitions.
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