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 Arbitrary topology
 Works with raw data
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Related Work

 Marching Cubes and variants
• Cline and Lorensen
• Efficiency: Wilhems et al, Cignoni et al, Shen et al
• Correctness: Nielson, Lewiner et al

 Force-based systems
• Particles: Crossno et al, Meyer et al

 Hybrid systems
• Wood et al, Guskov et al
• Gavriliu et al.

 Many, many others, see paper!
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Scheidegger, Fleishman and Silva / Triangulating Point Set Surfaces

Figure 2: Without the guidance field information, pieces of the
fronts can meet one another with different triangle sizes, leading

to arbitrarily bad triangles. Also, features may be missed entirely.

The top and middle images are two different views of the same tri-

angulation, created by removing the lookahead machinery from our

implementation. The bottom image shows our implementation with

the guidance field enabled – the fronts always meet one another in

the correct resolution and no features are missed.

distance field. We can use RBFs to solve the thin-plate spline

interpolation problem [TO02]. These are slower than MPUs,

local fittings joined together smoothly by weighted aver-

aging [OBA∗03]. These implicit reconstruction algorithms
typically require an additional post-processing step to im-

prove the quality of the triangulation. Most remeshing al-

gorithms are based on reparameterization [FH04, SAG03],

and as such, are expensive to compute. Moreover, it is not

straightforward to have such algorithms work in massive

models. Ideally, we would like our reconstruction algorithm

to be able to output a good triangulation without additional

requirements.

A set of efficient meshing algorithms have been based on

advancing fronts (also called surface tracking). The main

observation is that since a surface can be seen as a collection

of localized features, each piece of the reconstruction (be

it a triangle, a spline patch, etc.) should be decided locally.

Composing these local decisions naturally leads to advanc-

ing front algorithms. Our work is based on the same prin-

ciple. In fact, many successful algorithms use this concept

Figure 3: The basic operations in front advancing algorithms. To
grow a front, we either add a new vertex to the triangulation and

grow a triangle or we use three adjacent front vertices to cut an ear.

Front merging and splitting uses an existing front vertex for triangle

growing, instead of a newly placed one.

Figure 4: In an optimal curvature-adaptive triangulation, each tri-
angle edge subtends the same angle of the osculating circle. This

angle is user-specified and is a natural way of controlling the ap-

proximation error.

[BMR∗99, KS01]. Our algorithm is most similar to Karkanis
and Stewart [KS01], where they propose an advancing front

technique for meshing implicit surfaces. Their triangulation

technique samples the surface adaptively with respect to the

curvature, but it might miss features as shown in Figure 2.

Our work extends their ideas by using a separate guidance

field that allows us to proactively correct the triangle sizes

that sample surface, resulting in guaranteed surface cover-

age. For the most part, we use curvature as the guidance field

in our work, but any other measure of granularity could be

allowed: the field is represented by the restriction of a scalar

function in space. Additionally, we replace all the implicit

surface machinery by Point Set Surfaces [ABCO∗01], which
is defined using a projection operation. Since the advancing

front algorithm needs to “settle” vertices on the surface, the

MLS projection is a natural candidate for such an operation.

Furthermore, it allows us to reconstruct partial scans and sur-

faces with boundaries, since holes can be easily treated in the

Point-Set Surfaces framework.

Our work is related to Cheng and Shi’s [CS04], in the

sense that they propose a technique for meshing a class of

surfaces known as Molecular Skin Surfaces. We also pro-

pose an algorithm that meshes a certain, albeit more general,

class of surfaces, within a given error bound. Our technique

c© The Eurographics Association 2005.
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Guidance Field for Isosurface Extraction

 We use the spatial filter design formulation of Kindlmann et al.
 Geometry tensor

• Compute curvature from gradient, Hessian
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Silicium # samples # remaining before after
ρ = 0.5 818058 11190 1m28s 0m50s
ρ = 0.3 818058 28522 1m45s 1m08s
ρ = 0.2 818058 61443 2m07s 1m36s
Skull # samples # remaining before after
ρ = 0.5 12551234 50538 31m01 5m46s
ρ = 0.3 12551234 108931 27m05 7m27s
ρ = 0.2 12551234 198378 26m13 9m52s

Table 1. Sample of results of guidance field culling. “before” refers
to running time without culling, and “after” refers to running time after
culling.

it to compute κmax. We assume the isosurface does not pass through
critical points of f , and we denote n = (∇ f )/|∇ f |. Then,
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κmax is given by the spectral radius of G, which is easily computable
from matrix invariants. From κmax evaluated at s, we compute ι(s),
which determines a sample on the guidance field g̃s.

Advancing front algorithms must start from a seed point. In these
algorithms, there can only be as many connected components as there
are seed points, so these are an important part of the process. There are
efficient algorithms for computing these seed points, e.g., [6]. These
points are then projected on the surface using gradient descent.

We sample the surface curvature by generating a jittered random
set of sample points inside cells that neighbor the surface and then
project each of them on the surface, again through gradient descent.
Section 4.1 describes how to determine the number of points that are
necessary to guarantee correct reproduction of features. Finally, each
new triangle is created by determining the correct size as described
in [45]. The point is projected on the surface by using the dihedral
angle of the edge as the free parameter, and searching for the isovalue
similarly to the technique described in [13].

4 GUIDANCE FIELD ENHANCEMENTS

In this section, we describe two contributions to the theory of advanc-
ing front algorithms. The first one shows for the first time how to
guarantee that all features of the surface will be represented in the tri-
angle mesh, by determining an upper bound on the curvature of the
isosurface. This gives a condition for sufficiency of the guidance field.
The second contribution significantly improves the efficiency of the
guidance field evaluation. We show that most samples do not affect
the guidance field in any way, and we give an algorithm to compute
the minimal set of samples that are required to define g.

4.1 Creating a sufficient guidance field
The guidance field described in the previous section offers an ideal
way to control the mesh gradation of the reconstruction. The fun-
damental problem, though, is how to determine whether a surface
has been appropriately sampled. The guidance field is defined to be
bounded above by ι over all of the points on the mesh. However,
with an arbitrarily sampled guidance field, this may not be the case
as can be seen in Figure 2. The consequence of ι not bounding g is
that there will be points on the surface where the edge length created
by the advancing front will be larger than the curvature at that point
allows. Fortunately, since g̃s(s) conservatively bounds ι(s), an infinite
sampling density is not required to bound of ι on g. In this section,
we show how a sufficient sampling density can be computed. We call
a guidance field sufficient when it is less than ι at every point on the
surface.

Fig. 3. Minimal guidance fields. The two figures are rendered using
only the points in the guidance field — the black “regions” are simply
the inside of the surface without any illumination. After trimming, all the
tan-colored points are removed from the data structures, leaving only
the red points for querying.

We begin by taking note of two aspects of the guidance field. First,
we note that it can be made more conservative by simply reducing
the radius of curvature for a sample point when it is inserted into the
guidance field. This will never cause a sufficient guidance field to
become insufficient, but it may cause an insufficient guidance field to
become sufficient. Second, we note that given a guidance field sample
s, and another point on the surface x where |x− s|≤ ι(s), then g̃s(x)≤
ι(s). Assume that we can compute the minimum ι over all of the
points in the surface, and call it #ι$. We can now redefine the guidance
field samples to be in terms of #ι$. This has the effect of making the
guidance field more conservative, as in the first note above. It is now
clear that the guidance field is sufficient if there are no points x in
the surface such that there are no guidance field samples s with |x−
s| ≤ #ι$. Stated conversely, the guidance field might not be sufficient
if there exists a point x such that |x− s| > #ι$ for all guidance field
samples s.

The final remaining issue is how to compute #ι$. Since ι is in-
versely proportional to κmax, this means that we must find an upper
bound on κmax. In order to compute this bound, recall that κmax is
defined as the absolute value of the largest eigenvalue of the geom-
etry tensor G. Notice that this is exactly the spectral radius of G:
κmax = r(G). We will now bound the spectral radius of G. First, recall
that the spectral radius is bounded by any consistent matrix norm:

r(M)≤ ‖M‖
Recall, also, the submultiplicative property of matrix norms:

‖A · B‖ ≤ ‖A‖ ·‖B‖ (1)

We use the Frobenius norm of a matrix, ‖M‖2 = ∑i, j m2
i j. We bound

‖G‖ by directly applying Equation (1) to the κmax definition.

r(G) = κmax

≤ ‖G‖
≤ ‖PHP/|∇ f |‖

r(G)≤ ‖P‖ ·‖H‖ ·‖P‖ ·‖I/|∇ f |‖ (2)

We denote the normal n = ∇ f /|∇ f | = [nx ny nz]T , and we compute
‖P‖ by summing the diagonal terms and then the off-diagonal ones:

‖P‖2 = (1−nx
2)2 +(1−ny

2)2 +(1−nz
2)2 +

2nx
2ny

2 +2ny
2nz
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2nz

2
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√
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2

T trace of G
F Frobenius norm of G



Guidance Field for Isosurface Extraction

 Determine if set of samples is dense enough
• We want to bound minimum triangle size
• Bound max curvature (spectral radius of geometry tensor)

• Upper bound on any consistent matrix norm of Hessian
• Lower bound on gradient magnitude
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since |n| = 1, and so nx
2 + ny

2 + nz
2 = 1. Another simple calculation

shows that ‖I/|∇ f |‖=
√

3/|∇ f |, and so

r(G)≤ 2
√

3
|∇ f |‖H‖ (3)

This inequality shows that κmax is intimately related to |∇ f | and the
Hessian H. More importantly, it shows us that to bound κmax above, it
is enough to give a lower bound on |∇ f | and an upper bound on ‖H‖.
Since bounding these values over all of the points in the isosurface is
very difficult without a parameterization, a looser bound can be found
by taking it over all of the points in the domain of the implicit function.

Creating a sufficient guidance field in the way described above
would have the effect of making g flat — the edge lengths of the tri-
angulation would be almost uniform over the entire surface. Addition-
ally, the bound on κmax may go to infinity as the gradient magnitude
goes to zero. These two issues can easily be addressed by adaptively
subdividing the domain of the implicit surface, and creating sufficient
guidance fields in the separate regions independently. The guidance
fields are merged by using the new sample points from all separate
regions: this ensures that the resulting guidance field is sufficient and
Lipschitz-continuous. Since we assume that the implicit function has
non-zero gradient at all the points on the surface and the function is
at least C1 continuous, this procedure is guaranteed to find a finite
bound: there is always a tubular neighborhood of the surface where
the gradient is non-zero.

4.2 Minimal guidance field
Creating the guidance field with sufficiently many samples to capture
all of the details in the surface can produce a very large number of
points. The size of the guidance field directly affects the memory us-
age and running time of our algorithm, so it is desirable to remove
as many irrelevant samples as possible. Though many of the samples
are necessary, a large portion of them provide no information to the
guidance field. This happens when the edge length required for the
curvature at a sample s1 in the guidance field is always smaller than
that of another sample s2. In this situation, we say that s1 dominates
s2, as illustrated in Figure 2.

A naı̈ve procedure for culling the unnecessary samples is to com-
pare each sample to every other sample of the guidance field. This
is simple since determining if a single point dominates another is
straightforward. Since our guidance fields often initially contain mil-
lions of samples, this O(n2) algorithm is not practical.

Looking at Figure 2, notice how each of the samples define a cone
in Rn+1, where n is the dimension of the embedding space. This anal-
ogy translates perfectly into the case of 2-manifolds embedded in R3:
each g̃ defines a right cone in [x,y,z,r] space. By constructing a hi-
erarchical data structure in this space, we can perform carefully con-
structed range queries and remove entire sets of unnecessary samples
in a single query. The most important observation is this: if a point s1
dominates a point s2, s2 lies inside the cone defined by s1. Also, the
dominates relation is transitive: if s1 dominates s2 and s2 dominates
s3, then s1 dominates s3. This means that if s1 culls a set of points
{si}, the cones induced by all {si} need not be checked at all.

All of the points in the guidance field are initially inserted into
a 4-dimensional kd-tree. The coordinates for each sample s are
[sx,sy,sz,sr], where [sx,sy,sz] is the sample’s location in R3, and sr
is the height of the function g̃s at s. Note now that the set of
points {[x,y,z, g̃s([x,y,z])]}, x,y,z ∈ R3, can be represented by a 4-
dimensional cone with apex [sx,sy,sz,sr], axis [0,0,0,1], and angle
tan−1(η/η −1). This cone is completely defined by the sample’s lo-
cation and the user parameters ρ and η . Finding all of the samples
that are dominated by s is now reduced to a kd-tree query to find all of
the points that lie inside of this cone. Such a query relies on bounding
box / cone intersection and point-in-cone tests, both of which are quite
simple given that the cones are always aligned with the r axis. When
doing the kd-tree query, we simply mark all of the samples that lie in-
side of the cone. If all of the children of a node have been marked,
the node is also marked. This effectively prunes off branches of the

Fig. 4. Isosurfacing a structured grid of a silicium lattice simulation.
From left to right: marching cubes output, and our method for ρ = 0.3,
using respectively Catmull-Rom and B-splines for reconstruction.

kd-tree from subsequent queries. Ideally, we would query the cones
of the samples that dominate the most samples first, thus pruning off
large parts of the tree early in the process. However, since this infor-
mation is not known or easily computed, we use a heuristic. We note
that a given sample will never be dominated by another sample with
lower curvature. By sorting the samples by their curvature and doing
the queries in descending order, we can perform the culling in about
ten seconds for a million samples. When more than this many samples
are present in the original guidance field, we recursively subdivide un-
til the culling can be performed on a smaller subset. The following
pseudocode summarizes the algorithm.

CULL(g,ρ,η)
1 tree← kd-tree(s̃)
2 Sort(s̃,κmax(s̃))
3 for 0≤ i≤ |s̃|:
4 do if Not(Marked(s̃i))
5 then c← Cone(s̃i,ρ,η)
6 MarkIfInside(tree, c)
7 Discard all marked s̃i from g(x)

This procedure typically removes a large percentage of the sample
points, resulting in much lower memory usage and significantly faster
guidance field queries. Table 1 shows some of the results of culling
the guidance field. Notice that even though culling requires additional
processing, the total running time improves significantly. Also, notice
how in some cases, less than half of a percent of the points remain
in the guidance field after culling. Figure 3 shows the location of the
guidance field samples in space. It is clear that the samples in the high
curvature areas are the most significant, and tend to dominate the low
curvature samples in their vicinity. Surprisingly, this effect is quite
non-local, which accounts for the drastic reduction in the total sample
count.

5 DEFINING THE IMPLICIT FUNCTION

An important advantage of our advancing front technique is its gen-
erality. The algorithm itself is entirely oblivious to how the implicit
function is defined. We only require within a band of the desired iso-
surface, that the function be continuous (at least C1, preferably higher
order continuity), and that its value, first, and second order partial
derivatives can be evaluated. We also require that the gradient is non-
zero at all points in the isosurface. These requirements are quite mild
and allow our algorithm to be applied to many different implicit func-
tion definitions. Choosing the definition can be left up to the user.
This allows the implicit function being used by our advancing front
algorithm to exactly match the function used to generate the data. For
example, if the user wishes to extract the isosurfaces of a high order
finite element simulation which assumes a specific polynomial inter-
polation scheme, the same interpolation could be plugged into our al-
gorithm. We have been careful in our implementation to make this an

(for Frobenius matrix norm)
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Silicium # samples # remaining before after
ρ = 0.5 818058 11190 1m28s 0m50s
ρ = 0.3 818058 28522 1m45s 1m08s
ρ = 0.2 818058 61443 2m07s 1m36s
Skull # samples # remaining before after
ρ = 0.5 12551234 50538 31m01 5m46s
ρ = 0.3 12551234 108931 27m05 7m27s
ρ = 0.2 12551234 198378 26m13 9m52s

Table 1. Sample of results of guidance field culling. “before” refers
to running time without culling, and “after” refers to running time after
culling.

it to compute κmax. We assume the isosurface does not pass through
critical points of f , and we denote n = (∇ f )/|∇ f |. Then,
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G = PHP/|∇ f |

κmax is given by the spectral radius of G, which is easily computable
from matrix invariants. From κmax evaluated at s, we compute ι(s),
which determines a sample on the guidance field g̃s.

Advancing front algorithms must start from a seed point. In these
algorithms, there can only be as many connected components as there
are seed points, so these are an important part of the process. There are
efficient algorithms for computing these seed points, e.g., [6]. These
points are then projected on the surface using gradient descent.

We sample the surface curvature by generating a jittered random
set of sample points inside cells that neighbor the surface and then
project each of them on the surface, again through gradient descent.
Section 4.1 describes how to determine the number of points that are
necessary to guarantee correct reproduction of features. Finally, each
new triangle is created by determining the correct size as described
in [45]. The point is projected on the surface by using the dihedral
angle of the edge as the free parameter, and searching for the isovalue
similarly to the technique described in [13].

4 GUIDANCE FIELD ENHANCEMENTS

In this section, we describe two contributions to the theory of advanc-
ing front algorithms. The first one shows for the first time how to
guarantee that all features of the surface will be represented in the tri-
angle mesh, by determining an upper bound on the curvature of the
isosurface. This gives a condition for sufficiency of the guidance field.
The second contribution significantly improves the efficiency of the
guidance field evaluation. We show that most samples do not affect
the guidance field in any way, and we give an algorithm to compute
the minimal set of samples that are required to define g.

4.1 Creating a sufficient guidance field
The guidance field described in the previous section offers an ideal
way to control the mesh gradation of the reconstruction. The fun-
damental problem, though, is how to determine whether a surface
has been appropriately sampled. The guidance field is defined to be
bounded above by ι over all of the points on the mesh. However,
with an arbitrarily sampled guidance field, this may not be the case
as can be seen in Figure 2. The consequence of ι not bounding g is
that there will be points on the surface where the edge length created
by the advancing front will be larger than the curvature at that point
allows. Fortunately, since g̃s(s) conservatively bounds ι(s), an infinite
sampling density is not required to bound of ι on g. In this section,
we show how a sufficient sampling density can be computed. We call
a guidance field sufficient when it is less than ι at every point on the
surface.

Fig. 3. Minimal guidance fields. The two figures are rendered using
only the points in the guidance field — the black “regions” are simply
the inside of the surface without any illumination. After trimming, all the
tan-colored points are removed from the data structures, leaving only
the red points for querying.

We begin by taking note of two aspects of the guidance field. First,
we note that it can be made more conservative by simply reducing
the radius of curvature for a sample point when it is inserted into the
guidance field. This will never cause a sufficient guidance field to
become insufficient, but it may cause an insufficient guidance field to
become sufficient. Second, we note that given a guidance field sample
s, and another point on the surface x where |x− s|≤ ι(s), then g̃s(x)≤
ι(s). Assume that we can compute the minimum ι over all of the
points in the surface, and call it #ι$. We can now redefine the guidance
field samples to be in terms of #ι$. This has the effect of making the
guidance field more conservative, as in the first note above. It is now
clear that the guidance field is sufficient if there are no points x in
the surface such that there are no guidance field samples s with |x−
s| ≤ #ι$. Stated conversely, the guidance field might not be sufficient
if there exists a point x such that |x− s| > #ι$ for all guidance field
samples s.

The final remaining issue is how to compute #ι$. Since ι is in-
versely proportional to κmax, this means that we must find an upper
bound on κmax. In order to compute this bound, recall that κmax is
defined as the absolute value of the largest eigenvalue of the geom-
etry tensor G. Notice that this is exactly the spectral radius of G:
κmax = r(G). We will now bound the spectral radius of G. First, recall
that the spectral radius is bounded by any consistent matrix norm:

r(M)≤ ‖M‖
Recall, also, the submultiplicative property of matrix norms:

‖A · B‖ ≤ ‖A‖ ·‖B‖ (1)

We use the Frobenius norm of a matrix, ‖M‖2 = ∑i, j m2
i j. We bound

‖G‖ by directly applying Equation (1) to the κmax definition.

r(G) = κmax

≤ ‖G‖
≤ ‖PHP/|∇ f |‖

r(G)≤ ‖P‖ ·‖H‖ ·‖P‖ ·‖I/|∇ f |‖ (2)

We denote the normal n = ∇ f /|∇ f | = [nx ny nz]T , and we compute
‖P‖ by summing the diagonal terms and then the off-diagonal ones:
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triangle sizes completely locally, while the right inset shows the de-
sired correct behavior: triangles need to be made smaller before they
reach the geometric feature.

The advancing front algorithm of Schreiner et al. [45] solves these is-
sues robustly, by introducing a solid theoretical foundation for advanc-
ing front algorithms. In their algorithm, they use a guidance field to
help edge and triangle size selection. The guidance field is a scalar
function g defined on the surface, which determines how long the
edges incident to a point may be. They show how to construct g in
such a way that it has two important properties. First, g(x) is bounded
above by 2sin(ρ)/κmax, where κmax is the maximum absolute curva-
ture of the surface at point x, and ρ is a user defined parameter. This
ensures that all of the features in the surface are captured accurately to
the degree defined by ρ , independently of their scale. Second, the gra-
dient magnitude of g is never greater than 1−η−1, where η is another
user defined parameter. This prevents the triangle sizes from changing
too rapidly and poorly shaped triangles from being formed. They also
show that their guidance field construction can be used to bound both
the aspect ratio of most of the triangles, and the Hausdorff distance
between the original surface and the output mesh. This in turn can be
used to create a front intersection test procedure which can be proven
to be robust.

Their algorithm addresses all of the major issues hindering advanc-
ing front algorithms, but their robustness arguments depend critically
on two assumptions. First, they assume that the surface being triangu-
lated is smooth (even though it is certainly not the case for remeshing
applications, the focus of their work). For the case of implicit sur-
faces, we need only assume that the gradient of the implicit function is
defined and non-zero at all points in the surface. This is a reasonable
assumption to make. Second, they assume that the guidance field has
been sufficiently sampled so that the first property of g will hold. In
their work, they simply sample the mesh densely, but have no means
to check for sufficiency. Features smaller than the sampling density
can easily be missed by the triangulation. In Section 4.1 we present
a sampling condition which can be used to determine how many sam-
ples are truly required. Additionally, there typically will be many more
samples in the guidance field than are actually required, leading to in-
creased memory usage and execution times. In Section 4.2 we present
a procedure for culling out unnecessary samples, effectively comput-
ing a guidance field of minimal size. The following pseudocode is a
summary of our algorithm:

TRIANGULATE(f ,∇ f ,H(f ),k,ρ,η)
1 let S be defined by all x such that f (x) = k
2 g← GENERATE-SAMPLES(S ,∇ f ,H(f )) (see Section 4.1)
3 CULL(g,ρ,η) (see Section 4.2)
4 Active← SEED-FRONTS(S ) (see Section 3.2)
5 while |Active | > 0
6 do front← GET-ANY-FRONT(Active)
7 if OK-TO-ADD-TRIANGLE( f ront,ρ,η)
8 then ADD-TRIANGLE-TO-FRONT(front,ρ,η)
9 else other← GET-INTERFERING-FRONT(front)

10 if other = front
11 then (f1, f2)← SPLIT(front)
12 REMOVE-FRONTS(Active, {front})
13 ADD-FRONTS(Active, {f1, f2})
14 else new-front←MERGE(front,other)
15 REMOVE-FRONTS(Active, {front, other})
16 ADD-FRONTS(Active, {new-front})

Fig. 2. The guidance field g(t) on a parametric curve C = f (t) : R→S .
Note that the functions are plotted against the parameter t, not the curve
itself. g(C) is the lower envelope of all g̃. At the sample points s̃i, g̃i is
minimum, and it grows linearly as the distance from s̃i increases. Note
that if the sampling is too coarse, g(C) might not bound ι(C) (as shown
in the region inside the red circle). Section 4.1 shows how to provably
prevent this. Finally, some samples will not influence g(C) (in the figure,
the sample shown in blue). Section 4.2 shows how to efficiently remove
these points.

3.1 Guidance field construction
Due to the central importance of the guidance field, we summarize
the construction method of Schreiner et al. [45]. We start defining a
function which gives the ideal edge length at a point s on the surface:

ι(s) =
2sin(ρ/2)

κmax(s)

This function essentially determines the ideal size to be the length that
subtends a constant angle ρ on the minimum osculating circle of the
surface at x. Amenta and Bern [4] show that the local feature size
(LFS) bounds the curvature by below. ι(x) could be defined in terms
of the LFS, and every property of the guidance field will still hold.
We use curvature because computing the medial axis is much costlier.
We want edge lengths to smoothly grade as triangles come closer to s.
To achieve this, we create, for each point s in the isosurface, another
function, induced by ι(s). This function is defined over the entire
embedding space of the isosurface:

g̃s(x) = (1−η−1) · |x− s|+η−1 · ι(s)

This is just a cone centered at s, with slope 1−η−1. If s was the only
point sampled from the surface, g̃s would tell us exactly how large an
edge we could create at any other point on the surface. Note that g̃s
is conservative: g̃s(s) < ι(s). This will be important for our sampling
condition described in Section 4.1. Since we want all the constraints
to be satisfied, we define the guidance field g to be the lower envelope
of all of the g̃’s induced at each point on the surface:

g(x) = min
s∈S

g̃s(x)

Figure 2 illustrates g(x) for a low-dimensional case. We restrict our-
selves to isotropic reconstruction: triangle edge lengths are indepen-
dent of their orientation on the surface. The algorithm behavior de-
pends on only two parameters, ρ and η , which control respectively the
reconstruction accuracy and well-shapedness of triangles. ρ controls
the approximation error [44], and η determines the rate of triangle
expansion: every two adjacent edges e1 and e2 such that |e1| > |e2|
should respect |e1|/|e2| ≤ η . There are some noteworthy features of
the constructed guidance field. As shown in [45], g(x) is Lipschitz-
continuous, and so triangles will have good grading [43]. Additionally,
its exact value can be evaluated efficiently by kd-tree queries, requiring
no splatting of values in a regular grid or other, similar strategies [2].

3.2 Application to isosurfaces
Kindlmann et al. [27] show how to compute the geometry tensor G for
implicit surfaces. G encodes all curvature information, and so we use
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Silicium # samples # remaining before after
ρ = 0.5 818058 11190 1m28s 0m50s
ρ = 0.3 818058 28522 1m45s 1m08s
ρ = 0.2 818058 61443 2m07s 1m36s
Skull # samples # remaining before after
ρ = 0.5 12551234 50538 31m01 5m46s
ρ = 0.3 12551234 108931 27m05 7m27s
ρ = 0.2 12551234 198378 26m13 9m52s

Table 1. Sample of results of guidance field culling. “before” refers
to running time without culling, and “after” refers to running time after
culling.

it to compute κmax. We assume the isosurface does not pass through
critical points of f , and we denote n = (∇ f )/|∇ f |. Then,
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κmax is given by the spectral radius of G, which is easily computable
from matrix invariants. From κmax evaluated at s, we compute ι(s),
which determines a sample on the guidance field g̃s.

Advancing front algorithms must start from a seed point. In these
algorithms, there can only be as many connected components as there
are seed points, so these are an important part of the process. There are
efficient algorithms for computing these seed points, e.g., [6]. These
points are then projected on the surface using gradient descent.

We sample the surface curvature by generating a jittered random
set of sample points inside cells that neighbor the surface and then
project each of them on the surface, again through gradient descent.
Section 4.1 describes how to determine the number of points that are
necessary to guarantee correct reproduction of features. Finally, each
new triangle is created by determining the correct size as described
in [45]. The point is projected on the surface by using the dihedral
angle of the edge as the free parameter, and searching for the isovalue
similarly to the technique described in [13].

4 GUIDANCE FIELD ENHANCEMENTS

In this section, we describe two contributions to the theory of advanc-
ing front algorithms. The first one shows for the first time how to
guarantee that all features of the surface will be represented in the tri-
angle mesh, by determining an upper bound on the curvature of the
isosurface. This gives a condition for sufficiency of the guidance field.
The second contribution significantly improves the efficiency of the
guidance field evaluation. We show that most samples do not affect
the guidance field in any way, and we give an algorithm to compute
the minimal set of samples that are required to define g.

4.1 Creating a sufficient guidance field
The guidance field described in the previous section offers an ideal
way to control the mesh gradation of the reconstruction. The fun-
damental problem, though, is how to determine whether a surface
has been appropriately sampled. The guidance field is defined to be
bounded above by ι over all of the points on the mesh. However,
with an arbitrarily sampled guidance field, this may not be the case
as can be seen in Figure 2. The consequence of ι not bounding g is
that there will be points on the surface where the edge length created
by the advancing front will be larger than the curvature at that point
allows. Fortunately, since g̃s(s) conservatively bounds ι(s), an infinite
sampling density is not required to bound of ι on g. In this section,
we show how a sufficient sampling density can be computed. We call
a guidance field sufficient when it is less than ι at every point on the
surface.

Fig. 3. Minimal guidance fields. The two figures are rendered using
only the points in the guidance field — the black “regions” are simply
the inside of the surface without any illumination. After trimming, all the
tan-colored points are removed from the data structures, leaving only
the red points for querying.

We begin by taking note of two aspects of the guidance field. First,
we note that it can be made more conservative by simply reducing
the radius of curvature for a sample point when it is inserted into the
guidance field. This will never cause a sufficient guidance field to
become insufficient, but it may cause an insufficient guidance field to
become sufficient. Second, we note that given a guidance field sample
s, and another point on the surface x where |x− s|≤ ι(s), then g̃s(x)≤
ι(s). Assume that we can compute the minimum ι over all of the
points in the surface, and call it #ι$. We can now redefine the guidance
field samples to be in terms of #ι$. This has the effect of making the
guidance field more conservative, as in the first note above. It is now
clear that the guidance field is sufficient if there are no points x in
the surface such that there are no guidance field samples s with |x−
s| ≤ #ι$. Stated conversely, the guidance field might not be sufficient
if there exists a point x such that |x− s| > #ι$ for all guidance field
samples s.

The final remaining issue is how to compute #ι$. Since ι is in-
versely proportional to κmax, this means that we must find an upper
bound on κmax. In order to compute this bound, recall that κmax is
defined as the absolute value of the largest eigenvalue of the geom-
etry tensor G. Notice that this is exactly the spectral radius of G:
κmax = r(G). We will now bound the spectral radius of G. First, recall
that the spectral radius is bounded by any consistent matrix norm:

r(M)≤ ‖M‖
Recall, also, the submultiplicative property of matrix norms:

‖A · B‖ ≤ ‖A‖ ·‖B‖ (1)

We use the Frobenius norm of a matrix, ‖M‖2 = ∑i, j m2
i j. We bound

‖G‖ by directly applying Equation (1) to the κmax definition.
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triangle sizes completely locally, while the right inset shows the de-
sired correct behavior: triangles need to be made smaller before they
reach the geometric feature.

The advancing front algorithm of Schreiner et al. [45] solves these is-
sues robustly, by introducing a solid theoretical foundation for advanc-
ing front algorithms. In their algorithm, they use a guidance field to
help edge and triangle size selection. The guidance field is a scalar
function g defined on the surface, which determines how long the
edges incident to a point may be. They show how to construct g in
such a way that it has two important properties. First, g(x) is bounded
above by 2sin(ρ)/κmax, where κmax is the maximum absolute curva-
ture of the surface at point x, and ρ is a user defined parameter. This
ensures that all of the features in the surface are captured accurately to
the degree defined by ρ , independently of their scale. Second, the gra-
dient magnitude of g is never greater than 1−η−1, where η is another
user defined parameter. This prevents the triangle sizes from changing
too rapidly and poorly shaped triangles from being formed. They also
show that their guidance field construction can be used to bound both
the aspect ratio of most of the triangles, and the Hausdorff distance
between the original surface and the output mesh. This in turn can be
used to create a front intersection test procedure which can be proven
to be robust.

Their algorithm addresses all of the major issues hindering advanc-
ing front algorithms, but their robustness arguments depend critically
on two assumptions. First, they assume that the surface being triangu-
lated is smooth (even though it is certainly not the case for remeshing
applications, the focus of their work). For the case of implicit sur-
faces, we need only assume that the gradient of the implicit function is
defined and non-zero at all points in the surface. This is a reasonable
assumption to make. Second, they assume that the guidance field has
been sufficiently sampled so that the first property of g will hold. In
their work, they simply sample the mesh densely, but have no means
to check for sufficiency. Features smaller than the sampling density
can easily be missed by the triangulation. In Section 4.1 we present
a sampling condition which can be used to determine how many sam-
ples are truly required. Additionally, there typically will be many more
samples in the guidance field than are actually required, leading to in-
creased memory usage and execution times. In Section 4.2 we present
a procedure for culling out unnecessary samples, effectively comput-
ing a guidance field of minimal size. The following pseudocode is a
summary of our algorithm:

TRIANGULATE(f ,∇ f ,H(f ),k,ρ,η)
1 let S be defined by all x such that f (x) = k
2 g← GENERATE-SAMPLES(S ,∇ f ,H(f )) (see Section 4.1)
3 CULL(g,ρ,η) (see Section 4.2)
4 Active← SEED-FRONTS(S ) (see Section 3.2)
5 while |Active | > 0
6 do front← GET-ANY-FRONT(Active)
7 if OK-TO-ADD-TRIANGLE( f ront,ρ,η)
8 then ADD-TRIANGLE-TO-FRONT(front,ρ,η)
9 else other← GET-INTERFERING-FRONT(front)

10 if other = front
11 then (f1, f2)← SPLIT(front)
12 REMOVE-FRONTS(Active, {front})
13 ADD-FRONTS(Active, {f1, f2})
14 else new-front←MERGE(front,other)
15 REMOVE-FRONTS(Active, {front, other})
16 ADD-FRONTS(Active, {new-front})

Fig. 2. The guidance field g(t) on a parametric curve C = f (t) : R→S .
Note that the functions are plotted against the parameter t, not the curve
itself. g(C) is the lower envelope of all g̃. At the sample points s̃i, g̃i is
minimum, and it grows linearly as the distance from s̃i increases. Note
that if the sampling is too coarse, g(C) might not bound ι(C) (as shown
in the region inside the red circle). Section 4.1 shows how to provably
prevent this. Finally, some samples will not influence g(C) (in the figure,
the sample shown in blue). Section 4.2 shows how to efficiently remove
these points.

3.1 Guidance field construction
Due to the central importance of the guidance field, we summarize
the construction method of Schreiner et al. [45]. We start defining a
function which gives the ideal edge length at a point s on the surface:

ι(s) =
2sin(ρ/2)

κmax(s)

This function essentially determines the ideal size to be the length that
subtends a constant angle ρ on the minimum osculating circle of the
surface at x. Amenta and Bern [4] show that the local feature size
(LFS) bounds the curvature by below. ι(x) could be defined in terms
of the LFS, and every property of the guidance field will still hold.
We use curvature because computing the medial axis is much costlier.
We want edge lengths to smoothly grade as triangles come closer to s.
To achieve this, we create, for each point s in the isosurface, another
function, induced by ι(s). This function is defined over the entire
embedding space of the isosurface:

g̃s(x) = (1−η−1) · |x− s|+η−1 · ι(s)

This is just a cone centered at s, with slope 1−η−1. If s was the only
point sampled from the surface, g̃s would tell us exactly how large an
edge we could create at any other point on the surface. Note that g̃s
is conservative: g̃s(s) < ι(s). This will be important for our sampling
condition described in Section 4.1. Since we want all the constraints
to be satisfied, we define the guidance field g to be the lower envelope
of all of the g̃’s induced at each point on the surface:

g(x) = min
s∈S

g̃s(x)

Figure 2 illustrates g(x) for a low-dimensional case. We restrict our-
selves to isotropic reconstruction: triangle edge lengths are indepen-
dent of their orientation on the surface. The algorithm behavior de-
pends on only two parameters, ρ and η , which control respectively the
reconstruction accuracy and well-shapedness of triangles. ρ controls
the approximation error [44], and η determines the rate of triangle
expansion: every two adjacent edges e1 and e2 such that |e1| > |e2|
should respect |e1|/|e2| ≤ η . There are some noteworthy features of
the constructed guidance field. As shown in [45], g(x) is Lipschitz-
continuous, and so triangles will have good grading [43]. Additionally,
its exact value can be evaluated efficiently by kd-tree queries, requiring
no splatting of values in a regular grid or other, similar strategies [2].

3.2 Application to isosurfaces
Kindlmann et al. [27] show how to compute the geometry tensor G for
implicit surfaces. G encodes all curvature information, and so we use
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Model Alg. ρ η time # tris Histogram Model Alg. ρ η time # tris Histogram
Aneurism MC — — 0:07 133.5K SPX MT — — 0:00 2.3K

BS 0.2 1.2 5:18 461.7K NI 0.5 1.2 14:06 645.9K
Silicium MC — — 0:00 29.8K MLS 0.5 1.2 1:48 26.7K

CR 0.3 1.2 1:30 192.1K Torso-1 MT — — 0:01 3.1K
CR 0.5 1.33 0:58 92.1K NI 0.5 1.2 2:28 72.8K

Engine MC — — 0:09 592.1K MLS 0.5 1.2 2:04 702
BS 0.3 1.2 12:16 304.4K Torso-2 MT — — 0:02 24.2K

Skull MC — — 0:06 393.2K NI 0.5 1.2 12:48 656K
CR 0.5 1.2 5:50 259.2K MLS 0.5 1.2 4:24 2.4K

Table 3. Sample of results of our implementation, and comparison with MC and MT. The histograms show the distribution of circumcircle ratios,
where the three lines represent the minimum, the first half percentile and the median. The legend for the second column follows the conventions of
the rest of the paper. Dataset sizes: Aneurism, 2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226 bytes;
SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Rom isosurface is strictly different than the one generated by the as-
sumption of trilinearity imposed by Marching Cubes. This precludes
using the MC mesh as a base mesh for refining isosurfaces defined by
different filters. Finally, the excess topology eventually generated by
noise could be removed using an approach such as the one suggested
by Guskov and Wood [22]. For unstructured meshes, notice the geom-
etry generated for the Nielson interpolation scheme on Figure 5. The
tetrahedral mesh might be coarse, but the defined function has high
curvature inside each cell, and so an accurate sampling requires more
triangles. A more relaxed scheme such as MLS aproximation creates
isosurfaces with less curvature, and hence less triangles are needed.

All isosurfaces presented in this paper are smooth: both gradient
and Hessian are well-defined. This is a reasonable assumption given
the necessarily band-limited reconstruction of sampled volumes. Ad-
ditionally, a surface with a sharp corner will not admit a regular iso-
surface representation (i.e., one where f (x) = k,∇ f (x) "= 0). More
advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
to relax any of these constraints and simplify the mesh accordingly.
It should also be clear that the results generated in this paper are
easily generalizable to different surface formulations. If a function
admits gradient and Hessian, we can use our technique to extract a
high-quality, high-fidelity triangulation of any of its regular isosur-
faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK

We have presented a robust algorithm for extracting surfaces from im-
plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
work.
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shows that ‖I/|∇ f |‖=
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3/|∇ f |, and so

r(G)≤ 2
√

3
|∇ f |‖H‖ (3)

This inequality shows that κmax is intimately related to |∇ f | and the
Hessian H. More importantly, it shows us that to bound κmax above, it
is enough to give a lower bound on |∇ f | and an upper bound on ‖H‖.
Since bounding these values over all of the points in the isosurface is
very difficult without a parameterization, a looser bound can be found
by taking it over all of the points in the domain of the implicit function.

Creating a sufficient guidance field in the way described above
would have the effect of making g flat — the edge lengths of the tri-
angulation would be almost uniform over the entire surface. Addition-
ally, the bound on κmax may go to infinity as the gradient magnitude
goes to zero. These two issues can easily be addressed by adaptively
subdividing the domain of the implicit surface, and creating sufficient
guidance fields in the separate regions independently. The guidance
fields are merged by using the new sample points from all separate
regions: this ensures that the resulting guidance field is sufficient and
Lipschitz-continuous. Since we assume that the implicit function has
non-zero gradient at all the points on the surface and the function is
at least C1 continuous, this procedure is guaranteed to find a finite
bound: there is always a tubular neighborhood of the surface where
the gradient is non-zero.

4.2 Minimal guidance field
Creating the guidance field with sufficiently many samples to capture
all of the details in the surface can produce a very large number of
points. The size of the guidance field directly affects the memory us-
age and running time of our algorithm, so it is desirable to remove
as many irrelevant samples as possible. Though many of the samples
are necessary, a large portion of them provide no information to the
guidance field. This happens when the edge length required for the
curvature at a sample s1 in the guidance field is always smaller than
that of another sample s2. In this situation, we say that s1 dominates
s2, as illustrated in Figure 2.

A naı̈ve procedure for culling the unnecessary samples is to com-
pare each sample to every other sample of the guidance field. This
is simple since determining if a single point dominates another is
straightforward. Since our guidance fields often initially contain mil-
lions of samples, this O(n2) algorithm is not practical.

Looking at Figure 2, notice how each of the samples define a cone
in Rn+1, where n is the dimension of the embedding space. This anal-
ogy translates perfectly into the case of 2-manifolds embedded in R3:
each g̃ defines a right cone in [x,y,z,r] space. By constructing a hi-
erarchical data structure in this space, we can perform carefully con-
structed range queries and remove entire sets of unnecessary samples
in a single query. The most important observation is this: if a point s1
dominates a point s2, s2 lies inside the cone defined by s1. Also, the
dominates relation is transitive: if s1 dominates s2 and s2 dominates
s3, then s1 dominates s3. This means that if s1 culls a set of points
{si}, the cones induced by all {si} need not be checked at all.

All of the points in the guidance field are initially inserted into
a 4-dimensional kd-tree. The coordinates for each sample s are
[sx,sy,sz,sr], where [sx,sy,sz] is the sample’s location in R3, and sr
is the height of the function g̃s at s. Note now that the set of
points {[x,y,z, g̃s([x,y,z])]}, x,y,z ∈ R3, can be represented by a 4-
dimensional cone with apex [sx,sy,sz,sr], axis [0,0,0,1], and angle
tan−1(η/η −1). This cone is completely defined by the sample’s lo-
cation and the user parameters ρ and η . Finding all of the samples
that are dominated by s is now reduced to a kd-tree query to find all of
the points that lie inside of this cone. Such a query relies on bounding
box / cone intersection and point-in-cone tests, both of which are quite
simple given that the cones are always aligned with the r axis. When
doing the kd-tree query, we simply mark all of the samples that lie in-
side of the cone. If all of the children of a node have been marked,
the node is also marked. This effectively prunes off branches of the

Fig. 4. Isosurfacing a structured grid of a silicium lattice simulation.
From left to right: marching cubes output, and our method for ρ = 0.3,
using respectively Catmull-Rom and B-splines for reconstruction.

kd-tree from subsequent queries. Ideally, we would query the cones
of the samples that dominate the most samples first, thus pruning off
large parts of the tree early in the process. However, since this infor-
mation is not known or easily computed, we use a heuristic. We note
that a given sample will never be dominated by another sample with
lower curvature. By sorting the samples by their curvature and doing
the queries in descending order, we can perform the culling in about
ten seconds for a million samples. When more than this many samples
are present in the original guidance field, we recursively subdivide un-
til the culling can be performed on a smaller subset. The following
pseudocode summarizes the algorithm.

CULL(g,ρ,η)
1 tree← kd-tree(s̃)
2 Sort(s̃,κmax(s̃))
3 for 0≤ i≤ |s̃|:
4 do if Not(Marked(s̃i))
5 then c← Cone(s̃i,ρ,η)
6 MarkIfInside(tree, c)
7 Discard all marked s̃i from g(x)

This procedure typically removes a large percentage of the sample
points, resulting in much lower memory usage and significantly faster
guidance field queries. Table 1 shows some of the results of culling
the guidance field. Notice that even though culling requires additional
processing, the total running time improves significantly. Also, notice
how in some cases, less than half of a percent of the points remain
in the guidance field after culling. Figure 3 shows the location of the
guidance field samples in space. It is clear that the samples in the high
curvature areas are the most significant, and tend to dominate the low
curvature samples in their vicinity. Surprisingly, this effect is quite
non-local, which accounts for the drastic reduction in the total sample
count.

5 DEFINING THE IMPLICIT FUNCTION

An important advantage of our advancing front technique is its gen-
erality. The algorithm itself is entirely oblivious to how the implicit
function is defined. We only require within a band of the desired iso-
surface, that the function be continuous (at least C1, preferably higher
order continuity), and that its value, first, and second order partial
derivatives can be evaluated. We also require that the gradient is non-
zero at all points in the isosurface. These requirements are quite mild
and allow our algorithm to be applied to many different implicit func-
tion definitions. Choosing the definition can be left up to the user.
This allows the implicit function being used by our advancing front
algorithm to exactly match the function used to generate the data. For
example, if the user wishes to extract the isosurfaces of a high order
finite element simulation which assumes a specific polynomial inter-
polation scheme, the same interpolation could be plugged into our al-
gorithm. We have been careful in our implementation to make this an
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This inequality shows that κmax is intimately related to |∇ f | and the
Hessian H. More importantly, it shows us that to bound κmax above, it
is enough to give a lower bound on |∇ f | and an upper bound on ‖H‖.
Since bounding these values over all of the points in the isosurface is
very difficult without a parameterization, a looser bound can be found
by taking it over all of the points in the domain of the implicit function.

Creating a sufficient guidance field in the way described above
would have the effect of making g flat — the edge lengths of the tri-
angulation would be almost uniform over the entire surface. Addition-
ally, the bound on κmax may go to infinity as the gradient magnitude
goes to zero. These two issues can easily be addressed by adaptively
subdividing the domain of the implicit surface, and creating sufficient
guidance fields in the separate regions independently. The guidance
fields are merged by using the new sample points from all separate
regions: this ensures that the resulting guidance field is sufficient and
Lipschitz-continuous. Since we assume that the implicit function has
non-zero gradient at all the points on the surface and the function is
at least C1 continuous, this procedure is guaranteed to find a finite
bound: there is always a tubular neighborhood of the surface where
the gradient is non-zero.

4.2 Minimal guidance field
Creating the guidance field with sufficiently many samples to capture
all of the details in the surface can produce a very large number of
points. The size of the guidance field directly affects the memory us-
age and running time of our algorithm, so it is desirable to remove
as many irrelevant samples as possible. Though many of the samples
are necessary, a large portion of them provide no information to the
guidance field. This happens when the edge length required for the
curvature at a sample s1 in the guidance field is always smaller than
that of another sample s2. In this situation, we say that s1 dominates
s2, as illustrated in Figure 2.

A naı̈ve procedure for culling the unnecessary samples is to com-
pare each sample to every other sample of the guidance field. This
is simple since determining if a single point dominates another is
straightforward. Since our guidance fields often initially contain mil-
lions of samples, this O(n2) algorithm is not practical.

Looking at Figure 2, notice how each of the samples define a cone
in Rn+1, where n is the dimension of the embedding space. This anal-
ogy translates perfectly into the case of 2-manifolds embedded in R3:
each g̃ defines a right cone in [x,y,z,r] space. By constructing a hi-
erarchical data structure in this space, we can perform carefully con-
structed range queries and remove entire sets of unnecessary samples
in a single query. The most important observation is this: if a point s1
dominates a point s2, s2 lies inside the cone defined by s1. Also, the
dominates relation is transitive: if s1 dominates s2 and s2 dominates
s3, then s1 dominates s3. This means that if s1 culls a set of points
{si}, the cones induced by all {si} need not be checked at all.

All of the points in the guidance field are initially inserted into
a 4-dimensional kd-tree. The coordinates for each sample s are
[sx,sy,sz,sr], where [sx,sy,sz] is the sample’s location in R3, and sr
is the height of the function g̃s at s. Note now that the set of
points {[x,y,z, g̃s([x,y,z])]}, x,y,z ∈ R3, can be represented by a 4-
dimensional cone with apex [sx,sy,sz,sr], axis [0,0,0,1], and angle
tan−1(η/η −1). This cone is completely defined by the sample’s lo-
cation and the user parameters ρ and η . Finding all of the samples
that are dominated by s is now reduced to a kd-tree query to find all of
the points that lie inside of this cone. Such a query relies on bounding
box / cone intersection and point-in-cone tests, both of which are quite
simple given that the cones are always aligned with the r axis. When
doing the kd-tree query, we simply mark all of the samples that lie in-
side of the cone. If all of the children of a node have been marked,
the node is also marked. This effectively prunes off branches of the

Fig. 4. Isosurfacing a structured grid of a silicium lattice simulation.
From left to right: marching cubes output, and our method for ρ = 0.3,
using respectively Catmull-Rom and B-splines for reconstruction.

kd-tree from subsequent queries. Ideally, we would query the cones
of the samples that dominate the most samples first, thus pruning off
large parts of the tree early in the process. However, since this infor-
mation is not known or easily computed, we use a heuristic. We note
that a given sample will never be dominated by another sample with
lower curvature. By sorting the samples by their curvature and doing
the queries in descending order, we can perform the culling in about
ten seconds for a million samples. When more than this many samples
are present in the original guidance field, we recursively subdivide un-
til the culling can be performed on a smaller subset. The following
pseudocode summarizes the algorithm.

CULL(g,ρ,η)
1 tree← kd-tree(s̃)
2 Sort(s̃,κmax(s̃))
3 for 0≤ i≤ |s̃|:
4 do if Not(Marked(s̃i))
5 then c← Cone(s̃i,ρ,η)
6 MarkIfInside(tree, c)
7 Discard all marked s̃i from g(x)

This procedure typically removes a large percentage of the sample
points, resulting in much lower memory usage and significantly faster
guidance field queries. Table 1 shows some of the results of culling
the guidance field. Notice that even though culling requires additional
processing, the total running time improves significantly. Also, notice
how in some cases, less than half of a percent of the points remain
in the guidance field after culling. Figure 3 shows the location of the
guidance field samples in space. It is clear that the samples in the high
curvature areas are the most significant, and tend to dominate the low
curvature samples in their vicinity. Surprisingly, this effect is quite
non-local, which accounts for the drastic reduction in the total sample
count.

5 DEFINING THE IMPLICIT FUNCTION

An important advantage of our advancing front technique is its gen-
erality. The algorithm itself is entirely oblivious to how the implicit
function is defined. We only require within a band of the desired iso-
surface, that the function be continuous (at least C1, preferably higher
order continuity), and that its value, first, and second order partial
derivatives can be evaluated. We also require that the gradient is non-
zero at all points in the isosurface. These requirements are quite mild
and allow our algorithm to be applied to many different implicit func-
tion definitions. Choosing the definition can be left up to the user.
This allows the implicit function being used by our advancing front
algorithm to exactly match the function used to generate the data. For
example, if the user wishes to extract the isosurfaces of a high order
finite element simulation which assumes a specific polynomial inter-
polation scheme, the same interpolation could be plugged into our al-
gorithm. We have been careful in our implementation to make this an
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Model Alg. ρ η time # tris Histogram Model Alg. ρ η time # tris Histogram
Aneurism MC — — 0:07 133.5K SPX MT — — 0:00 2.3K

BS 0.2 1.2 5:18 461.7K NI 0.5 1.2 14:06 645.9K
Silicium MC — — 0:00 29.8K MLS 0.5 1.2 1:48 26.7K

CR 0.3 1.2 1:30 192.1K Torso-1 MT — — 0:01 3.1K
CR 0.5 1.33 0:58 92.1K NI 0.5 1.2 2:28 72.8K

Engine MC — — 0:09 592.1K MLS 0.5 1.2 2:04 702
BS 0.3 1.2 12:16 304.4K Torso-2 MT — — 0:02 24.2K

Skull MC — — 0:06 393.2K NI 0.5 1.2 12:48 656K
CR 0.5 1.2 5:50 259.2K MLS 0.5 1.2 4:24 2.4K

Table 3. Sample of results of our implementation, and comparison with MC and MT. The histograms show the distribution of circumcircle ratios,
where the three lines represent the minimum, the first half percentile and the median. The legend for the second column follows the conventions of
the rest of the paper. Dataset sizes: Aneurism, 2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226 bytes;
SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Rom isosurface is strictly different than the one generated by the as-
sumption of trilinearity imposed by Marching Cubes. This precludes
using the MC mesh as a base mesh for refining isosurfaces defined by
different filters. Finally, the excess topology eventually generated by
noise could be removed using an approach such as the one suggested
by Guskov and Wood [22]. For unstructured meshes, notice the geom-
etry generated for the Nielson interpolation scheme on Figure 5. The
tetrahedral mesh might be coarse, but the defined function has high
curvature inside each cell, and so an accurate sampling requires more
triangles. A more relaxed scheme such as MLS aproximation creates
isosurfaces with less curvature, and hence less triangles are needed.

All isosurfaces presented in this paper are smooth: both gradient
and Hessian are well-defined. This is a reasonable assumption given
the necessarily band-limited reconstruction of sampled volumes. Ad-
ditionally, a surface with a sharp corner will not admit a regular iso-
surface representation (i.e., one where f (x) = k,∇ f (x) "= 0). More
advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
to relax any of these constraints and simplify the mesh accordingly.
It should also be clear that the results generated in this paper are
easily generalizable to different surface formulations. If a function
admits gradient and Hessian, we can use our technique to extract a
high-quality, high-fidelity triangulation of any of its regular isosur-
faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK

We have presented a robust algorithm for extracting surfaces from im-
plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
work.
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since |n| = 1, and so nx
2 + ny

2 + nz
2 = 1. Another simple calculation

shows that ‖I/|∇ f |‖=
√

3/|∇ f |, and so

r(G)≤ 2
√

3
|∇ f |‖H‖ (3)

This inequality shows that κmax is intimately related to |∇ f | and the
Hessian H. More importantly, it shows us that to bound κmax above, it
is enough to give a lower bound on |∇ f | and an upper bound on ‖H‖.
Since bounding these values over all of the points in the isosurface is
very difficult without a parameterization, a looser bound can be found
by taking it over all of the points in the domain of the implicit function.

Creating a sufficient guidance field in the way described above
would have the effect of making g flat — the edge lengths of the tri-
angulation would be almost uniform over the entire surface. Addition-
ally, the bound on κmax may go to infinity as the gradient magnitude
goes to zero. These two issues can easily be addressed by adaptively
subdividing the domain of the implicit surface, and creating sufficient
guidance fields in the separate regions independently. The guidance
fields are merged by using the new sample points from all separate
regions: this ensures that the resulting guidance field is sufficient and
Lipschitz-continuous. Since we assume that the implicit function has
non-zero gradient at all the points on the surface and the function is
at least C1 continuous, this procedure is guaranteed to find a finite
bound: there is always a tubular neighborhood of the surface where
the gradient is non-zero.

4.2 Minimal guidance field
Creating the guidance field with sufficiently many samples to capture
all of the details in the surface can produce a very large number of
points. The size of the guidance field directly affects the memory us-
age and running time of our algorithm, so it is desirable to remove
as many irrelevant samples as possible. Though many of the samples
are necessary, a large portion of them provide no information to the
guidance field. This happens when the edge length required for the
curvature at a sample s1 in the guidance field is always smaller than
that of another sample s2. In this situation, we say that s1 dominates
s2, as illustrated in Figure 2.

A naı̈ve procedure for culling the unnecessary samples is to com-
pare each sample to every other sample of the guidance field. This
is simple since determining if a single point dominates another is
straightforward. Since our guidance fields often initially contain mil-
lions of samples, this O(n2) algorithm is not practical.

Looking at Figure 2, notice how each of the samples define a cone
in Rn+1, where n is the dimension of the embedding space. This anal-
ogy translates perfectly into the case of 2-manifolds embedded in R3:
each g̃ defines a right cone in [x,y,z,r] space. By constructing a hi-
erarchical data structure in this space, we can perform carefully con-
structed range queries and remove entire sets of unnecessary samples
in a single query. The most important observation is this: if a point s1
dominates a point s2, s2 lies inside the cone defined by s1. Also, the
dominates relation is transitive: if s1 dominates s2 and s2 dominates
s3, then s1 dominates s3. This means that if s1 culls a set of points
{si}, the cones induced by all {si} need not be checked at all.

All of the points in the guidance field are initially inserted into
a 4-dimensional kd-tree. The coordinates for each sample s are
[sx,sy,sz,sr], where [sx,sy,sz] is the sample’s location in R3, and sr
is the height of the function g̃s at s. Note now that the set of
points {[x,y,z, g̃s([x,y,z])]}, x,y,z ∈ R3, can be represented by a 4-
dimensional cone with apex [sx,sy,sz,sr], axis [0,0,0,1], and angle
tan−1(η/η −1). This cone is completely defined by the sample’s lo-
cation and the user parameters ρ and η . Finding all of the samples
that are dominated by s is now reduced to a kd-tree query to find all of
the points that lie inside of this cone. Such a query relies on bounding
box / cone intersection and point-in-cone tests, both of which are quite
simple given that the cones are always aligned with the r axis. When
doing the kd-tree query, we simply mark all of the samples that lie in-
side of the cone. If all of the children of a node have been marked,
the node is also marked. This effectively prunes off branches of the

Fig. 4. Isosurfacing a structured grid of a silicium lattice simulation.
From left to right: marching cubes output, and our method for ρ = 0.3,
using respectively Catmull-Rom and B-splines for reconstruction.

kd-tree from subsequent queries. Ideally, we would query the cones
of the samples that dominate the most samples first, thus pruning off
large parts of the tree early in the process. However, since this infor-
mation is not known or easily computed, we use a heuristic. We note
that a given sample will never be dominated by another sample with
lower curvature. By sorting the samples by their curvature and doing
the queries in descending order, we can perform the culling in about
ten seconds for a million samples. When more than this many samples
are present in the original guidance field, we recursively subdivide un-
til the culling can be performed on a smaller subset. The following
pseudocode summarizes the algorithm.

CULL(g,ρ,η)
1 tree← kd-tree(s̃)
2 Sort(s̃,κmax(s̃))
3 for 0≤ i≤ |s̃|:
4 do if Not(Marked(s̃i))
5 then c← Cone(s̃i,ρ,η)
6 MarkIfInside(tree, c)
7 Discard all marked s̃i from g(x)

This procedure typically removes a large percentage of the sample
points, resulting in much lower memory usage and significantly faster
guidance field queries. Table 1 shows some of the results of culling
the guidance field. Notice that even though culling requires additional
processing, the total running time improves significantly. Also, notice
how in some cases, less than half of a percent of the points remain
in the guidance field after culling. Figure 3 shows the location of the
guidance field samples in space. It is clear that the samples in the high
curvature areas are the most significant, and tend to dominate the low
curvature samples in their vicinity. Surprisingly, this effect is quite
non-local, which accounts for the drastic reduction in the total sample
count.

5 DEFINING THE IMPLICIT FUNCTION

An important advantage of our advancing front technique is its gen-
erality. The algorithm itself is entirely oblivious to how the implicit
function is defined. We only require within a band of the desired iso-
surface, that the function be continuous (at least C1, preferably higher
order continuity), and that its value, first, and second order partial
derivatives can be evaluated. We also require that the gradient is non-
zero at all points in the isosurface. These requirements are quite mild
and allow our algorithm to be applied to many different implicit func-
tion definitions. Choosing the definition can be left up to the user.
This allows the implicit function being used by our advancing front
algorithm to exactly match the function used to generate the data. For
example, if the user wishes to extract the isosurfaces of a high order
finite element simulation which assumes a specific polynomial inter-
polation scheme, the same interpolation could be plugged into our al-
gorithm. We have been careful in our implementation to make this an
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Model Alg. ρ η time # tris Histogram Model Alg. ρ η time # tris Histogram
Aneurism MC — — 0:07 133.5K SPX MT — — 0:00 2.3K

BS 0.2 1.2 5:18 461.7K NI 0.5 1.2 14:06 645.9K
Silicium MC — — 0:00 29.8K MLS 0.5 1.2 1:48 26.7K

CR 0.3 1.2 1:30 192.1K Torso-1 MT — — 0:01 3.1K
CR 0.5 1.33 0:58 92.1K NI 0.5 1.2 2:28 72.8K

Engine MC — — 0:09 592.1K MLS 0.5 1.2 2:04 702
BS 0.3 1.2 12:16 304.4K Torso-2 MT — — 0:02 24.2K

Skull MC — — 0:06 393.2K NI 0.5 1.2 12:48 656K
CR 0.5 1.2 5:50 259.2K MLS 0.5 1.2 4:24 2.4K

Table 3. Sample of results of our implementation, and comparison with MC and MT. The histograms show the distribution of circumcircle ratios,
where the three lines represent the minimum, the first half percentile and the median. The legend for the second column follows the conventions of
the rest of the paper. Dataset sizes: Aneurism, 2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226 bytes;
SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Rom isosurface is strictly different than the one generated by the as-
sumption of trilinearity imposed by Marching Cubes. This precludes
using the MC mesh as a base mesh for refining isosurfaces defined by
different filters. Finally, the excess topology eventually generated by
noise could be removed using an approach such as the one suggested
by Guskov and Wood [22]. For unstructured meshes, notice the geom-
etry generated for the Nielson interpolation scheme on Figure 5. The
tetrahedral mesh might be coarse, but the defined function has high
curvature inside each cell, and so an accurate sampling requires more
triangles. A more relaxed scheme such as MLS aproximation creates
isosurfaces with less curvature, and hence less triangles are needed.

All isosurfaces presented in this paper are smooth: both gradient
and Hessian are well-defined. This is a reasonable assumption given
the necessarily band-limited reconstruction of sampled volumes. Ad-
ditionally, a surface with a sharp corner will not admit a regular iso-
surface representation (i.e., one where f (x) = k,∇ f (x) "= 0). More
advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
to relax any of these constraints and simplify the mesh accordingly.
It should also be clear that the results generated in this paper are
easily generalizable to different surface formulations. If a function
admits gradient and Hessian, we can use our technique to extract a
high-quality, high-fidelity triangulation of any of its regular isosur-
faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK

We have presented a robust algorithm for extracting surfaces from im-
plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
work.
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Fig. 5. Isosurfacing unstructured grids. From left to right: MT output,
and our method for ρ = 0.5, using respectively Nielson interpolation and
Moving Least Squares for reconstruction.

easy step for the user. In this paper we show examples generated with
four different surface definitions — two for structured grids and two
for unstructured grids. See Table 2.

5.1 Structured Grids
To define an implicit function over a regular grid of sample points,
we use piecewise cubic trivariate polynomials generated by two dif-
ferent spline types. To generate an implicit function that interpolates
the data points, we use Catmull-Rom splines [11]. These splines can
be thought of as using finite differences at each data point to generate
gradients. The function is then extended to the interior of each cell by
Hermite interpolation. This results in cubic polynomials which are C1

continuous across cell boundaries. B-splines [42] are another popular
spline. These produce polynomials in each cell that maintain C2 conti-
nuity across the boundaries, but do not interpolate the input data. This
may be desirable if the data is noisy. Since the Catmull-Rom splines
interpolate, they tend to produce functions with high curvature when
noise is present. Though we can triangulate these surfaces without
problem, the high curvature isosurfaces require more triangles to be
accurately captured (see Figure 4). These spline representations are
ideal because they define analytic, piecewise polynomials, which can
easily be differentiated to compute gradient and curvature information.

5.2 Unstructured Grids
Extending the implicit function from the data points to the interior
of the cells of unstructured meshes is much more challenging. Here,
we have a mesh defined by a set of connected tetrahedra with values
assigned at each vertex. A scheme for defining the function on the
interior of each tetrahedra that is at least C1 continuous across faces
must be created. In this paper we tried two such schemes. Splines
cannot easily be applied to this situation because of the irregular nature
of tetrahedral meshes. Similar to regular grids, we use one implicit
function definition that is C1 and interpolates the data values, and one
that has higher order continuity but only approximates the data.

The irregular mesh interpolation scheme that we use is that of Niel-
son et al. [38]. We have chosen this method for its simplicity, though
other techniques are available, such as A-patches [5] and DMS-splines
[19]. Nielson interpolation requires that the gradients of the implicit
function are known at the vertices. Since this is generally not the case,
we substitute an approximation. To estimate the gradient at vertex,
we fit a trivariate quadratic polynomial to the 2–ring neighborhood of
the vertex. We define the gradient of the implicit function to be the
gradient of this polynomial at the vertex. The Nielson scheme first
uses the function and gradient information of the vertices to define
the function and gradient along all of the edges in the mesh. It then
uses this edge information and extends it to be defined across all of

Interpolating Approximating
Structured Catmull-Rom (CR) B-Splines (BS)
Unstructured Nielson (NI) MLS

Table 2. The four surface definitions implemented in this paper.

the faces. Finally, the function is extended from the faces to the in-
teriors of the tetrahedra. Each of the extension procedures (vertices
to edges to faces to tetrahedra) is based on Hermite interpolation, and
is constructed in a way that maintains C1 continuity across the cell
boundaries. The resulting implicit function definition for the interior
of the tetrahedra is a complicated rational function that is not practical
to differentiate analytically. Instead of resorting to finite differencing,
we use C++ metaprogramming to automatically compute the function
and its derivatives by encoding the chain rule for all of the primitive
functions used.

We use the popular moving least squares (MLS) method [28] as an
implicit function definition that approximates the input data. The idea
of the MLS method is to compute a low degree polynomial that best
approximates the input data, weighted by a function of the distance
from the evaluation point to the data points. The function value at
the evaluation point is then simply the value of the polynomial at that
point. This has a smoothing effect on the data, so it is especially use-
ful when noise is present in the input data. A nice property of MLS
is that the smoothness of the resulting function is exactly that of the
chosen weighting function. We use rapidly decaying gaussians as the
weighting functions, with widths determined by the local point den-
sity. Though the function is very smooth, it is not possible to directly
compute its derivatives because every evaluation involves the solution
of a linear least squares problem. We have found that using quadratic
polynomials for the fitting and using their differential properties as an
approximation of the function performs well in practice.

6 EXPERIMENTAL RESULTS AND DISCUSSION

We have implemented the algorithm in C++, and in this section we
describe the results of a series of experiments. All timings were per-
formed on a PC with two dual-core AMD Opteron processors running
at 2.25GHz, with 4GB of main memory, running SuSE Linux 10.0.
Advancing front algorithms are mostly local, allowing decisions and
actions to be taken independently of the reconstruction of distant sur-
face parts. Our implementation is multi-threaded, and it tries to take
advantage of this and distribute the work of projecting points on the
fronts to a set of worker threads. The guidance field computation and
culling is also performed entirely in parallel. We use four threads for
all shown experiments.

Table 3 shows a summary of the experimental results of our imple-
mentation. The running times for our algorithms are typically in the
order of several minutes for the larger datasets we used. The histogram
column shows the distribution of triangle circle ratios (the ratio of the
incircle to the circumcircle). Notice that the distribution is excellent,
and also uniform across different models and parameter settings. For
many of the rectangular grids, the number of triangles generated is
significantly less than the output of MC.

The triangle quality generated by our algorithm is very good, as the
circumcircle ratio histograms of Table 3 show. For all models gener-
ated, 99% of the triangles have quality at least half of optimal, and the
triangle with median quality is within 3% of optimal. These results
hold across different models, ρ and η values, and different surface
definitions. In terms of running time, our algorithm is not as fast as
MC or MT implementations. However, it should be noted that the tri-
angulations created by our technique will tend to require negligible or
no downstream processing, unlike the results of MC or MT.

The surfaces generated by our algorithm are dependent on the in-
trinsic geometry of the implicit function, and not on the grid on which
they were sample. As a consequence, we are able to generate high-
quality meshes for high-curvature surfaces. Naturally, Catmull-Rom
splines tend to generate surfaces with higher curvatures, while B-
splines offer an overall smoother result. We show both schemes, to-
gether with MC, on Figure 4. Notice that the topology of the Catmull-
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Model Alg. ρ η time # tris Histogram Model Alg. ρ η time # tris Histogram
Aneurism MC — — 0:07 133.5K SPX MT — — 0:00 2.3K

BS 0.2 1.2 5:18 461.7K NI 0.5 1.2 14:06 645.9K
Silicium MC — — 0:00 29.8K MLS 0.5 1.2 1:48 26.7K

CR 0.3 1.2 1:30 192.1K Torso-1 MT — — 0:01 3.1K
CR 0.5 1.33 0:58 92.1K NI 0.5 1.2 2:28 72.8K

Engine MC — — 0:09 592.1K MLS 0.5 1.2 2:04 702
BS 0.3 1.2 12:16 304.4K Torso-2 MT — — 0:02 24.2K

Skull MC — — 0:06 393.2K NI 0.5 1.2 12:48 656K
CR 0.5 1.2 5:50 259.2K MLS 0.5 1.2 4:24 2.4K

Table 3. Sample of results of our implementation, and comparison with MC and MT. The histograms show the distribution of circumcircle ratios,
where the three lines represent the minimum, the first half percentile and the median. The legend for the second column follows the conventions of
the rest of the paper. Dataset sizes: Aneurism, 2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226 bytes;
SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Rom isosurface is strictly different than the one generated by the as-
sumption of trilinearity imposed by Marching Cubes. This precludes
using the MC mesh as a base mesh for refining isosurfaces defined by
different filters. Finally, the excess topology eventually generated by
noise could be removed using an approach such as the one suggested
by Guskov and Wood [22]. For unstructured meshes, notice the geom-
etry generated for the Nielson interpolation scheme on Figure 5. The
tetrahedral mesh might be coarse, but the defined function has high
curvature inside each cell, and so an accurate sampling requires more
triangles. A more relaxed scheme such as MLS aproximation creates
isosurfaces with less curvature, and hence less triangles are needed.

All isosurfaces presented in this paper are smooth: both gradient
and Hessian are well-defined. This is a reasonable assumption given
the necessarily band-limited reconstruction of sampled volumes. Ad-
ditionally, a surface with a sharp corner will not admit a regular iso-
surface representation (i.e., one where f (x) = k,∇ f (x) "= 0). More
advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
to relax any of these constraints and simplify the mesh accordingly.
It should also be clear that the results generated in this paper are
easily generalizable to different surface formulations. If a function
admits gradient and Hessian, we can use our technique to extract a
high-quality, high-fidelity triangulation of any of its regular isosur-
faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK

We have presented a robust algorithm for extracting surfaces from im-
plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
work.
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Fig. 5. Isosurfacing unstructured grids. From left to right: MT output,
and our method for ρ = 0.5, using respectively Nielson interpolation and
Moving Least Squares for reconstruction.

easy step for the user. In this paper we show examples generated with
four different surface definitions — two for structured grids and two
for unstructured grids. See Table 2.

5.1 Structured Grids
To define an implicit function over a regular grid of sample points,
we use piecewise cubic trivariate polynomials generated by two dif-
ferent spline types. To generate an implicit function that interpolates
the data points, we use Catmull-Rom splines [11]. These splines can
be thought of as using finite differences at each data point to generate
gradients. The function is then extended to the interior of each cell by
Hermite interpolation. This results in cubic polynomials which are C1

continuous across cell boundaries. B-splines [42] are another popular
spline. These produce polynomials in each cell that maintain C2 conti-
nuity across the boundaries, but do not interpolate the input data. This
may be desirable if the data is noisy. Since the Catmull-Rom splines
interpolate, they tend to produce functions with high curvature when
noise is present. Though we can triangulate these surfaces without
problem, the high curvature isosurfaces require more triangles to be
accurately captured (see Figure 4). These spline representations are
ideal because they define analytic, piecewise polynomials, which can
easily be differentiated to compute gradient and curvature information.

5.2 Unstructured Grids
Extending the implicit function from the data points to the interior
of the cells of unstructured meshes is much more challenging. Here,
we have a mesh defined by a set of connected tetrahedra with values
assigned at each vertex. A scheme for defining the function on the
interior of each tetrahedra that is at least C1 continuous across faces
must be created. In this paper we tried two such schemes. Splines
cannot easily be applied to this situation because of the irregular nature
of tetrahedral meshes. Similar to regular grids, we use one implicit
function definition that is C1 and interpolates the data values, and one
that has higher order continuity but only approximates the data.

The irregular mesh interpolation scheme that we use is that of Niel-
son et al. [38]. We have chosen this method for its simplicity, though
other techniques are available, such as A-patches [5] and DMS-splines
[19]. Nielson interpolation requires that the gradients of the implicit
function are known at the vertices. Since this is generally not the case,
we substitute an approximation. To estimate the gradient at vertex,
we fit a trivariate quadratic polynomial to the 2–ring neighborhood of
the vertex. We define the gradient of the implicit function to be the
gradient of this polynomial at the vertex. The Nielson scheme first
uses the function and gradient information of the vertices to define
the function and gradient along all of the edges in the mesh. It then
uses this edge information and extends it to be defined across all of

Interpolating Approximating
Structured Catmull-Rom (CR) B-Splines (BS)
Unstructured Nielson (NI) MLS

Table 2. The four surface definitions implemented in this paper.

the faces. Finally, the function is extended from the faces to the in-
teriors of the tetrahedra. Each of the extension procedures (vertices
to edges to faces to tetrahedra) is based on Hermite interpolation, and
is constructed in a way that maintains C1 continuity across the cell
boundaries. The resulting implicit function definition for the interior
of the tetrahedra is a complicated rational function that is not practical
to differentiate analytically. Instead of resorting to finite differencing,
we use C++ metaprogramming to automatically compute the function
and its derivatives by encoding the chain rule for all of the primitive
functions used.

We use the popular moving least squares (MLS) method [28] as an
implicit function definition that approximates the input data. The idea
of the MLS method is to compute a low degree polynomial that best
approximates the input data, weighted by a function of the distance
from the evaluation point to the data points. The function value at
the evaluation point is then simply the value of the polynomial at that
point. This has a smoothing effect on the data, so it is especially use-
ful when noise is present in the input data. A nice property of MLS
is that the smoothness of the resulting function is exactly that of the
chosen weighting function. We use rapidly decaying gaussians as the
weighting functions, with widths determined by the local point den-
sity. Though the function is very smooth, it is not possible to directly
compute its derivatives because every evaluation involves the solution
of a linear least squares problem. We have found that using quadratic
polynomials for the fitting and using their differential properties as an
approximation of the function performs well in practice.

6 EXPERIMENTAL RESULTS AND DISCUSSION

We have implemented the algorithm in C++, and in this section we
describe the results of a series of experiments. All timings were per-
formed on a PC with two dual-core AMD Opteron processors running
at 2.25GHz, with 4GB of main memory, running SuSE Linux 10.0.
Advancing front algorithms are mostly local, allowing decisions and
actions to be taken independently of the reconstruction of distant sur-
face parts. Our implementation is multi-threaded, and it tries to take
advantage of this and distribute the work of projecting points on the
fronts to a set of worker threads. The guidance field computation and
culling is also performed entirely in parallel. We use four threads for
all shown experiments.

Table 3 shows a summary of the experimental results of our imple-
mentation. The running times for our algorithms are typically in the
order of several minutes for the larger datasets we used. The histogram
column shows the distribution of triangle circle ratios (the ratio of the
incircle to the circumcircle). Notice that the distribution is excellent,
and also uniform across different models and parameter settings. For
many of the rectangular grids, the number of triangles generated is
significantly less than the output of MC.

The triangle quality generated by our algorithm is very good, as the
circumcircle ratio histograms of Table 3 show. For all models gener-
ated, 99% of the triangles have quality at least half of optimal, and the
triangle with median quality is within 3% of optimal. These results
hold across different models, ρ and η values, and different surface
definitions. In terms of running time, our algorithm is not as fast as
MC or MT implementations. However, it should be noted that the tri-
angulations created by our technique will tend to require negligible or
no downstream processing, unlike the results of MC or MT.

The surfaces generated by our algorithm are dependent on the in-
trinsic geometry of the implicit function, and not on the grid on which
they were sample. As a consequence, we are able to generate high-
quality meshes for high-curvature surfaces. Naturally, Catmull-Rom
splines tend to generate surfaces with higher curvatures, while B-
splines offer an overall smoother result. We show both schemes, to-
gether with MC, on Figure 4. Notice that the topology of the Catmull-

SCHREINER et al.: HIGH-QUALITY EXTRACTION OF ISOSURFACES FROM REGULAR AND IRREGULAR GRIDS

Model Alg. ρ η time # tris Histogram Model Alg. ρ η time # tris Histogram
Aneurism MC — — 0:07 133.5K SPX MT — — 0:00 2.3K

BS 0.2 1.2 5:18 461.7K NI 0.5 1.2 14:06 645.9K
Silicium MC — — 0:00 29.8K MLS 0.5 1.2 1:48 26.7K

CR 0.3 1.2 1:30 192.1K Torso-1 MT — — 0:01 3.1K
CR 0.5 1.33 0:58 92.1K NI 0.5 1.2 2:28 72.8K

Engine MC — — 0:09 592.1K MLS 0.5 1.2 2:04 702
BS 0.3 1.2 12:16 304.4K Torso-2 MT — — 0:02 24.2K

Skull MC — — 0:06 393.2K NI 0.5 1.2 12:48 656K
CR 0.5 1.2 5:50 259.2K MLS 0.5 1.2 4:24 2.4K

Table 3. Sample of results of our implementation, and comparison with MC and MT. The histograms show the distribution of circumcircle ratios,
where the three lines represent the minimum, the first half percentile and the median. The legend for the second column follows the conventions of
the rest of the paper. Dataset sizes: Aneurism, 2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226 bytes;
SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Rom isosurface is strictly different than the one generated by the as-
sumption of trilinearity imposed by Marching Cubes. This precludes
using the MC mesh as a base mesh for refining isosurfaces defined by
different filters. Finally, the excess topology eventually generated by
noise could be removed using an approach such as the one suggested
by Guskov and Wood [22]. For unstructured meshes, notice the geom-
etry generated for the Nielson interpolation scheme on Figure 5. The
tetrahedral mesh might be coarse, but the defined function has high
curvature inside each cell, and so an accurate sampling requires more
triangles. A more relaxed scheme such as MLS aproximation creates
isosurfaces with less curvature, and hence less triangles are needed.

All isosurfaces presented in this paper are smooth: both gradient
and Hessian are well-defined. This is a reasonable assumption given
the necessarily band-limited reconstruction of sampled volumes. Ad-
ditionally, a surface with a sharp corner will not admit a regular iso-
surface representation (i.e., one where f (x) = k,∇ f (x) "= 0). More
advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
to relax any of these constraints and simplify the mesh accordingly.
It should also be clear that the results generated in this paper are
easily generalizable to different surface formulations. If a function
admits gradient and Hessian, we can use our technique to extract a
high-quality, high-fidelity triangulation of any of its regular isosur-
faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK

We have presented a robust algorithm for extracting surfaces from im-
plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
work.
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Fig. 5. Isosurfacing unstructured grids. From left to right: MT output,
and our method for ρ = 0.5, using respectively Nielson interpolation and
Moving Least Squares for reconstruction.

easy step for the user. In this paper we show examples generated with
four different surface definitions — two for structured grids and two
for unstructured grids. See Table 2.

5.1 Structured Grids
To define an implicit function over a regular grid of sample points,
we use piecewise cubic trivariate polynomials generated by two dif-
ferent spline types. To generate an implicit function that interpolates
the data points, we use Catmull-Rom splines [11]. These splines can
be thought of as using finite differences at each data point to generate
gradients. The function is then extended to the interior of each cell by
Hermite interpolation. This results in cubic polynomials which are C1

continuous across cell boundaries. B-splines [42] are another popular
spline. These produce polynomials in each cell that maintain C2 conti-
nuity across the boundaries, but do not interpolate the input data. This
may be desirable if the data is noisy. Since the Catmull-Rom splines
interpolate, they tend to produce functions with high curvature when
noise is present. Though we can triangulate these surfaces without
problem, the high curvature isosurfaces require more triangles to be
accurately captured (see Figure 4). These spline representations are
ideal because they define analytic, piecewise polynomials, which can
easily be differentiated to compute gradient and curvature information.

5.2 Unstructured Grids
Extending the implicit function from the data points to the interior
of the cells of unstructured meshes is much more challenging. Here,
we have a mesh defined by a set of connected tetrahedra with values
assigned at each vertex. A scheme for defining the function on the
interior of each tetrahedra that is at least C1 continuous across faces
must be created. In this paper we tried two such schemes. Splines
cannot easily be applied to this situation because of the irregular nature
of tetrahedral meshes. Similar to regular grids, we use one implicit
function definition that is C1 and interpolates the data values, and one
that has higher order continuity but only approximates the data.

The irregular mesh interpolation scheme that we use is that of Niel-
son et al. [38]. We have chosen this method for its simplicity, though
other techniques are available, such as A-patches [5] and DMS-splines
[19]. Nielson interpolation requires that the gradients of the implicit
function are known at the vertices. Since this is generally not the case,
we substitute an approximation. To estimate the gradient at vertex,
we fit a trivariate quadratic polynomial to the 2–ring neighborhood of
the vertex. We define the gradient of the implicit function to be the
gradient of this polynomial at the vertex. The Nielson scheme first
uses the function and gradient information of the vertices to define
the function and gradient along all of the edges in the mesh. It then
uses this edge information and extends it to be defined across all of

Interpolating Approximating
Structured Catmull-Rom (CR) B-Splines (BS)
Unstructured Nielson (NI) MLS

Table 2. The four surface definitions implemented in this paper.

the faces. Finally, the function is extended from the faces to the in-
teriors of the tetrahedra. Each of the extension procedures (vertices
to edges to faces to tetrahedra) is based on Hermite interpolation, and
is constructed in a way that maintains C1 continuity across the cell
boundaries. The resulting implicit function definition for the interior
of the tetrahedra is a complicated rational function that is not practical
to differentiate analytically. Instead of resorting to finite differencing,
we use C++ metaprogramming to automatically compute the function
and its derivatives by encoding the chain rule for all of the primitive
functions used.

We use the popular moving least squares (MLS) method [28] as an
implicit function definition that approximates the input data. The idea
of the MLS method is to compute a low degree polynomial that best
approximates the input data, weighted by a function of the distance
from the evaluation point to the data points. The function value at
the evaluation point is then simply the value of the polynomial at that
point. This has a smoothing effect on the data, so it is especially use-
ful when noise is present in the input data. A nice property of MLS
is that the smoothness of the resulting function is exactly that of the
chosen weighting function. We use rapidly decaying gaussians as the
weighting functions, with widths determined by the local point den-
sity. Though the function is very smooth, it is not possible to directly
compute its derivatives because every evaluation involves the solution
of a linear least squares problem. We have found that using quadratic
polynomials for the fitting and using their differential properties as an
approximation of the function performs well in practice.

6 EXPERIMENTAL RESULTS AND DISCUSSION

We have implemented the algorithm in C++, and in this section we
describe the results of a series of experiments. All timings were per-
formed on a PC with two dual-core AMD Opteron processors running
at 2.25GHz, with 4GB of main memory, running SuSE Linux 10.0.
Advancing front algorithms are mostly local, allowing decisions and
actions to be taken independently of the reconstruction of distant sur-
face parts. Our implementation is multi-threaded, and it tries to take
advantage of this and distribute the work of projecting points on the
fronts to a set of worker threads. The guidance field computation and
culling is also performed entirely in parallel. We use four threads for
all shown experiments.

Table 3 shows a summary of the experimental results of our imple-
mentation. The running times for our algorithms are typically in the
order of several minutes for the larger datasets we used. The histogram
column shows the distribution of triangle circle ratios (the ratio of the
incircle to the circumcircle). Notice that the distribution is excellent,
and also uniform across different models and parameter settings. For
many of the rectangular grids, the number of triangles generated is
significantly less than the output of MC.

The triangle quality generated by our algorithm is very good, as the
circumcircle ratio histograms of Table 3 show. For all models gener-
ated, 99% of the triangles have quality at least half of optimal, and the
triangle with median quality is within 3% of optimal. These results
hold across different models, ρ and η values, and different surface
definitions. In terms of running time, our algorithm is not as fast as
MC or MT implementations. However, it should be noted that the tri-
angulations created by our technique will tend to require negligible or
no downstream processing, unlike the results of MC or MT.

The surfaces generated by our algorithm are dependent on the in-
trinsic geometry of the implicit function, and not on the grid on which
they were sample. As a consequence, we are able to generate high-
quality meshes for high-curvature surfaces. Naturally, Catmull-Rom
splines tend to generate surfaces with higher curvatures, while B-
splines offer an overall smoother result. We show both schemes, to-
gether with MC, on Figure 4. Notice that the topology of the Catmull-

SCHREINER et al.: HIGH-QUALITY EXTRACTION OF ISOSURFACES FROM REGULAR AND IRREGULAR GRIDS

Model Alg. ρ η time # tris Histogram Model Alg. ρ η time # tris Histogram
Aneurism MC — — 0:07 133.5K SPX MT — — 0:00 2.3K

BS 0.2 1.2 5:18 461.7K NI 0.5 1.2 14:06 645.9K
Silicium MC — — 0:00 29.8K MLS 0.5 1.2 1:48 26.7K

CR 0.3 1.2 1:30 192.1K Torso-1 MT — — 0:01 3.1K
CR 0.5 1.33 0:58 92.1K NI 0.5 1.2 2:28 72.8K

Engine MC — — 0:09 592.1K MLS 0.5 1.2 2:04 702
BS 0.3 1.2 12:16 304.4K Torso-2 MT — — 0:02 24.2K

Skull MC — — 0:06 393.2K NI 0.5 1.2 12:48 656K
CR 0.5 1.2 5:50 259.2K MLS 0.5 1.2 4:24 2.4K

Table 3. Sample of results of our implementation, and comparison with MC and MT. The histograms show the distribution of circumcircle ratios,
where the three lines represent the minimum, the first half percentile and the median. The legend for the second column follows the conventions of
the rest of the paper. Dataset sizes: Aneurism, 2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226 bytes;
SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Rom isosurface is strictly different than the one generated by the as-
sumption of trilinearity imposed by Marching Cubes. This precludes
using the MC mesh as a base mesh for refining isosurfaces defined by
different filters. Finally, the excess topology eventually generated by
noise could be removed using an approach such as the one suggested
by Guskov and Wood [22]. For unstructured meshes, notice the geom-
etry generated for the Nielson interpolation scheme on Figure 5. The
tetrahedral mesh might be coarse, but the defined function has high
curvature inside each cell, and so an accurate sampling requires more
triangles. A more relaxed scheme such as MLS aproximation creates
isosurfaces with less curvature, and hence less triangles are needed.

All isosurfaces presented in this paper are smooth: both gradient
and Hessian are well-defined. This is a reasonable assumption given
the necessarily band-limited reconstruction of sampled volumes. Ad-
ditionally, a surface with a sharp corner will not admit a regular iso-
surface representation (i.e., one where f (x) = k,∇ f (x) "= 0). More
advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
to relax any of these constraints and simplify the mesh accordingly.
It should also be clear that the results generated in this paper are
easily generalizable to different surface formulations. If a function
admits gradient and Hessian, we can use our technique to extract a
high-quality, high-fidelity triangulation of any of its regular isosur-
faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK

We have presented a robust algorithm for extracting surfaces from im-
plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
work.
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Discussion

 Method is appropriate if subsequent processing is necessary
 One pass algorithm produces results comparable to global methods
 Output mesh is dependent on the isosurface itself, and not the domain 

on which it is defined

 Requires the gradient of function to be defined
• True for all manifold isosurfaces
• No sharp features
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Future Work

 Out of core meshing of gigantic data sets
• Particularly for regular grids
• Output already streamed, stream input
• Control interaction between global guidance field and input stream

 Bound quality of all triangles
• Not just those that create new vertices
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Thank you!

 Questions?
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Fig. 6. Some results of our algorithm, compared to MC and MT. From left to right: CT scans of an aneurism, a bonsai and an engine block, and
isopotential surfaces of a human torso simulation. The first three datasets are regular grids, while the last one is a tetrahedral mesh.
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Model Alg. ρ η time # tris Histogram Model Alg. ρ η time # tris Histogram
Aneurism MC — — 0:07 133.5K SPX MT — — 0:00 2.3K

BS 0.2 1.2 5:18 461.7K NI 0.5 1.2 14:06 645.9K
Silicium MC — — 0:00 29.8K MLS 0.5 1.2 1:48 26.7K

CR 0.3 1.2 1:30 192.1K Torso-1 MT — — 0:01 3.1K
CR 0.5 1.33 0:58 92.1K NI 0.5 1.2 2:28 72.8K

Engine MC — — 0:09 592.1K MLS 0.5 1.2 2:04 702
BS 0.3 1.2 12:16 304.4K Torso-2 MT — — 0:02 24.2K

Skull MC — — 0:06 393.2K NI 0.5 1.2 12:48 656K
CR 0.5 1.2 5:50 259.2K MLS 0.5 1.2 4:24 2.4K

Table 3. Sample of results of our implementation, and comparison with MC and MT. The histograms show the distribution of circumcircle ratios,
where the three lines represent the minimum, the first half percentile and the median. The legend for the second column follows the conventions of
the rest of the paper. Dataset sizes: Aneurism, 2563 bytes; Silicium, 98×34×34 bytes; Engine, 256×128×128 bytes; Skull, 256×256×226 bytes;
SPX, 13k tetrahedra; Torso, 1.1 million tetrahedra.

Rom isosurface is strictly different than the one generated by the as-
sumption of trilinearity imposed by Marching Cubes. This precludes
using the MC mesh as a base mesh for refining isosurfaces defined by
different filters. Finally, the excess topology eventually generated by
noise could be removed using an approach such as the one suggested
by Guskov and Wood [22]. For unstructured meshes, notice the geom-
etry generated for the Nielson interpolation scheme on Figure 5. The
tetrahedral mesh might be coarse, but the defined function has high
curvature inside each cell, and so an accurate sampling requires more
triangles. A more relaxed scheme such as MLS aproximation creates
isosurfaces with less curvature, and hence less triangles are needed.

All isosurfaces presented in this paper are smooth: both gradient
and Hessian are well-defined. This is a reasonable assumption given
the necessarily band-limited reconstruction of sampled volumes. Ad-
ditionally, a surface with a sharp corner will not admit a regular iso-
surface representation (i.e., one where f (x) = k,∇ f (x) "= 0). More
advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
to relax any of these constraints and simplify the mesh accordingly.
It should also be clear that the results generated in this paper are
easily generalizable to different surface formulations. If a function
admits gradient and Hessian, we can use our technique to extract a
high-quality, high-fidelity triangulation of any of its regular isosur-
faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK

We have presented a robust algorithm for extracting surfaces from im-
plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
work.
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advanced representations that keep the flexibility of implicit surfaces
might be possible, but they are outside the scope of this paper.

Triangle counts are often less than MC triangle counts, and while
one of the schemes generates much denser triangle meshes than seems
necessary, overall they tend to be well within the applicability range
of downstream processing methods. Additionally, the mesh has both
bounded distance and (trivially, cf. Section 3.1) bounded normal error.
If that proves to be too restrictive, a downstream tool might choose
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It should also be clear that the results generated in this paper are
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faces. This is especially true for high-order meshes, where the im-
age of each cell is dictated by a high-order (typically around degree
10 [36]) polynomial. In this case, pieces of the isosurface might have
a much higher frequency than the one implied by the vertex spacing.
Our model, however, is entirely oblivious of the underlying mesh, and
given a function that computes gradient and Hessian, will still work as
if it were dealing with a low-order mesh.

7 CONCLUSION AND FUTURE WORK
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plicit functions. Our algorithm generates meshes that combine triangle
quality, adaptiveness and fidelity, easing the process of making iso-
surface meshes more directly applicable for downstream processing.
We believe this algorithm can be adapted for processing gigantic data
with minimal changes, by combining the generation of the guidance
field with the actual isosurface extraction and out-of-core techniques.
We would also like to give triangle shape guarantees for the meshes
generated by the algorithm. These are all intriguing avenues for future
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